
Priority-Aware Per-flow Measurement using Cuckoo
Sketch

Yibo Yan1, Cheng Chen2, Huiping Lin2, Olivier Ruas2, Tengjiao Wang2, and Tong Yang2

1School of Electronics and Computer Engineering (SECE), Peking University, Shenzhen, P.R. China
2 Peking University, Beijing, P.R. China

{yanyibo, chen.cheng, phoenixrain}@pku.edu.cn, olivier.ruas@gmail.com,
tjwang@pku.edu.cn, yangtongemail@gmail.com

Abstract—Flow size estimation is a key task in per-flow
measurement. In real scenarios, among millions of flows, people
are often particularly interested in a small subset of given flows.
These flows with high priorities are called important flows. In
this poster, we propose the Cuckoo sketch, which provides higher
accuracy for important flows. The key idea of the Cuckoo sketch
is to separate the important flows from the unimportant ones
and store them in different structures: the important flows are
stored in a Cuckoo hash table where the exact size of the flow
is stored while the unimportant flows are stored in a Count-Min
sketch. The reallocation mechanism of the Cuckoo hashing is used
to make some space in the Cuckoo hash table for the important
flow by evicting the ones that are less important, which leads to a
slight loss in throughput. Experimental results show that Cuckoo
sketch provides better accuracy on important flows, reducing the
average relative error by up to 69%, with only suffering from a
negligible loss in accuracy for unimportant flows.

I. INTRODUCTION

Per-flow measurement plays an important role in network
management. It provides usage accounting [1] with funda-
mental traffic statistics and finds heavy hitters and heavy for
intrusion detection [2], [3]. Being able to identify and quantify
the different flows is important because it has an important
impact on how the packets will be handled. For example, ISPs
ensure high Quality of Service (QoS) for premium users. To
meet this end, they need to achieve more accurate flow size
estimation on the network traffic flows from or to the premium
users than other flows for traffic accounting and billing.

There exist a few studies in network measurement that
make a distinction between the flows. Cuckoo sampling [4]
provides a sampling method that guarantees enough memory
for incoming flows by discarding information when memory
is not enough. However, sampling-based methods are not
friendly to mice flows. Besides, Cuckoo Counter [5] proposes
a method that utilizes the Cuckoo hashing to evict mice
flows from entries with large sizes for elephant flows, which
provides higher accuracy for elephant flows. Each entry of
the Cuckoo Counter records the fingerprint and the number of
packets of a flow. Because a flow whose the number of packets
is not exact when different flows are stored in its entry, the
fingerprint of the flow is useless for querying, which causes the
waste of memory. This method is quite similar to our method.

Annex to ISBN 978-3-903176-28-7© 2020 IFIP

The main difference between them is that our method achieves
higher space utilization and is more flexible.

In this poster, we divide flows into two kinds: (i) important
flows, small in numbers but carrying the most valuable infor-
mation, and (ii) unimportant flows representing the majority of
the packets and whose value is of little importance. To provide
important flows the highest accuracy as possible and guarantee
that approximations for the estimations of unimportant flows
are acceptable, we propose a two-layer sketch named Cuckoo
sketch. Sketch is a kind of memory-efficient probabilistic data
structures that provide both fast insertions and queries while
producing high quality estimations. The key idea of Cuckoo
sketch is to separate important flows from unimportant flows
and to store them into two different layers, one with high
accuracy for important flows and one more memory efficient
for unimportant flows. Besides, Cuckoo hashing is employed
to improve the load factor of the sketch.

II. OUR SOLUTION: THE CUCKOO SKETCH

In this section, we present the Cuckoo sketch and the two
operations it supports: the insertion of a packet and the query
of the estimation of the size of a given flow.

A. Data Structure

The Cuckoo sketch, represented in Fig. 1, is composed of
two layers L1 and L2 and a priority information table (PIT).

The first layer L1 is a hash table using Cuckoo hashing, and
is associated with two hash functions h1 and h2. There are w1

buckets in the layer L1, and each bucket contains m cells. Let

Fig. 1. Data structure of the Cuckoo sketch.

idf denote the ID of the flow f and cf denote the estimated
size of the flow f . Each cell stores one key-value pair 〈id, c〉
whose key is the ID of a flow and whose value is the estimated
size of the flow. The ID of a flow could be any combination
of its source IP address, source port, protocol, destination IP
address and destination port. The jth cell of the ith bucket in
the layer L1 is denoted as L1[i][j] (i ∈ [1, w1], j ∈ [1,m]).
We mainly use this layer to store important flows. The second
layer L2 of the Cuckoo sketch is a CM sketch [6]. The CM
sketch consists of d arrays, and each of the arrays contains
w2 counters. Arrays (Ai)i∈[1,d] are associated with d hash
functions (gi)i∈[1,d], respectively. The jth counter of the ith

array in the layer L2 is denoted as L2[i][j] (i ∈ [1, d], j ∈
[1, w2]). Note that these d hash functions (gi)i∈[1,d] need to
be pairwise independent. The second layer is used to store the
unimportant flows, resulting in a large gain in memory while
guaranteeing good accuracy.

To make a distinction between important and unimportant
flows, we assume that each flow has a priority. The priority can
be determined according to applications’ demands. The higher
the priority is, the more important the flow is. The priorities
of flows are maintained in a table denoted as PIT (priority
information table). Each entry of the table records a flow’s
ID and priority. The priority of a flow f is denoted as Pf .
Besides, we introduce virtual priorities to flows. The virtual
priority of a flow is an arbitrary value given by a function
k(.). Given the ID of a flow f , the virtual priority of the
flow is k(idf). Note that the virtual priority is independent of
the applications, and it can be implemented as a classic hash
function: the only requirement is the existence of a total order
on the hash values.

B. Insertion

Initially, all the key-value pairs stored in the layer L1 are
initialized to 〈null, 0〉, and all the counters in the layer L2 are
initialized to 0. For each incoming packet p belonging to flow
f , the Cuckoo sketch constructs a key-value pair kv = 〈idf , 1〉
which is first tried to be inserted into L1. If the insertion fails,
the key-value pair kv is then inserted into the layer L2.

a) Insertion in the first layer L1: To store the key-value
pair kv in the layer L1, the two hashes h1(idf) ∈ [1, w1]
and h2(idf) ∈ [1, w1] are computed to map kv to two
corresponding buckets L1[h1(idf)] and L1[h2(idf)]. The two
buckets are checked at the same time. There are three cases:
• Case 1: If there is already a pair 〈idf , cf 〉 in either
L1[h1(idf)] or L1[h2(idf)], then the associated estimated
flow size cf is incremented by 1. Then insertion ends.

• Case 2: If there is no key-value pair whose key is idf in
either L1[h1(idf)] nor L1[h2(idf)] but there is at least
one empty cell in one of the two buckets, the pair kv is
stored in any one empty cell. Then insertion ends.

• Case 3: If there is no key-value pair whose key is equal
to idf in either L1[h1(idf)] nor L1[h2(idf)] and there
is no empty cell, the pair whose corresponding flow has
the lowest priority in both buckets is tried to be evicted
to make some space for kv. More precisely, let fmin

be the flow with the lowest priority and kvmin be its
associated key-value pair. In the case there are several
flows sharing the same lowest priority, one flow whose
virtual priority is the lowest is chosen. If there are many
flows whose virtual priorities are the lowest among the
flows whose priorities are the lowest, one of them will be
randomly chosen. If fmin has a higher priority than f ,
i.e. Pfmin > Pf , kv will be stored in the second layer L2.
If f has the same priority as fmin and the virtual priority
of f is lower than or equal to that of fmin, kv will also
be stored in the second layer L2. Otherwise, kvmin is
evicted, and fmin becomes an evicted flow. Then, kv is
stored at its place, and kvmin is reallocated using the
same insertion mechanism.

This process is done recursively until the evicted flow finds
an empty cell or is stored in the second layer. To prevent
prohibitive computation time, the process stops after a prede-
fined number of T recursive calls. After T recursive calls, the
current evicted flow is directly stored into the second layer.

b) Insertion in the second layer L2: A key-value pair
kv = 〈id, c〉 is inserted into the second layer L2 by computing
the d hash functions (gi(id))i∈[1,d] to map the corresponding
flow to d counters (L2[i][gi(id)])i∈[1,d]. Then, the Cuckoo
sketch increments all the d counters by c:

∀i ∈ [1, d], L2[i][gi(id)] = L2[i][gi(id)] + c

C. Query

Similarly to the insertion, the query is first performed in
the first layer, and if the queried flow is not found, it is then
queried in the second layer. To query a flow f in the first
layer, the two hashes h1(idf) and h2(idf) are computed and
all the cells of the corresponding buckets L1[h1(idf)] and
L1[h2(idf)] are checked. If a key-value pair whose key is
idf is found, its value c is returned as the estimated size
of f . If no such key-value pair is found, then we estimate
the size of the flow by using the second layer. For a CM
sketch, the estimation is the minimum value of all the counters
(L2[i][gi(idf)])i∈[1,d]:

min{L2[i][gi(idf)], i ∈ [1, d]}

Motivation: One might wonder why the Cuckoo sketch relies
on such an insertion scheme when a simpler one could have
worked: if a flow is important, then the flow is stored in L1,
else it is stored directly in L2. While it may have been a
good solution when the important flows fit perfectly in the
Cuckoo hash table, it fails to provide an efficient solution for
an unknown stream. Indeed, if the important flows are few in
numbers, the Cuckoo hash table will be wasting space, and the
resulting estimation for the unimportant flows will be lower
than with the Cuckoo sketch. On the other hand, if there are
too many important flows, the Cuckoo hash table becomes full
and unable to store anymore flows, while the Cuckoo sketch
makes space for the most important flows in the first layer by
reallocating the least important one into the second layer.

III. PERFORMANCE EVALUATION

A. Experimental Setup
Dataset: We use seven real IP traces from CAIDA [7]
to evaluate the performance of the Cuckoo sketch. In our
experiments, the priority of each flow is chosen at random.
Priorities are integers going from 0 to 7 and the number of
flows for each priority is following the Zipf distribution [8],
a distribution widely used for modeling network traffic [9].
The probability mass function of Zipf distribution is defined
as Pmfα,n(k) = k−α∑

i∈{1,...,n} i
−α where α is the skewness

parameter of the Zipf distribution and n is a positive integer.
We set n to 8 and α to 2.
Implementation: We compare our Cuckoo sketch with three
typical sketches: the CM sketch, the CU sketch [10], and the
Count sketch [11]. All these sketches are implemented in C++,
and we have released the source code at GitHub [12]. For
these typical sketches including the second layer of the Cuckoo
sketch, each of them has three arrays, and the size of their
counters is 4-byte. Each cell in L1 is 8-byte, and 4 bytes is
for storing the ID of a flow. In addition, T is set to 10.
Evaluation metrics: We evaluate the performance of the
Cuckoo sketch through ARE and RMSE.

• Average Relative Error (ARE): 1
n

∑n
i=1

|fi−f̂i|
fi

, where
n is the number of flows, fi is the actual flow size,
and f̂i is the estimated flow size. It is used to evaluate
the accuracy of flow size estimation, and large ARE
indicates low accuracy. We are interested in two dis-
tinct ARE values: the ARE for all flows, denoted as
Cuckoo ALL, and the ARE for important flows only,
denoted as Cuckoo IMP .

• Root Mean Square Error (RMSE):
√∑n

i=1(f̂i−fi)2
n , where

the n, the f̂i, and the fi are the same as defined in the
ARE.

B. Experimental Results
We evaluate the performance of the Cuckoo sketch by

varying the memory size from 0.4MB to 1.4MB.
ARE vs. memory size (Fig. 2(a)): The AREs of all the
sketches decreases as the memory size increases, and com-
pared with the CM sketch, CU sketch, and the Count sketch,
the Cuckoo sketch benefits more from enlarging memory size.
When the memory size is 0.4MB, both of the Count sketch
and the CU sketch are more accurate than the Cuckoo sketch.
As the memory size increases to 1MB, the Cuckoo sketch
becomes the most accurate sketch among those sketches. The
AREs of the Cuckoo ALL and the Cuckoo IMP are 0.24 and
0.06, respectively, while the AREs of the Count sketch and
the CU sketch is 0.65 and 0.26.
RMSE vs. memory size (Fig. 2(b)): As expected, the change
of memory size has a similar impact on RMSE. When the
memory size is 0.8MB, the RMSE of the Cuckoo IMP is
the smallest. As the the memory size creases to 1.2MB, the
Cuckoo sketch becomes the most accurate sketch and its
RMSE is 1.6, 6.28, and 1.12 times lower than that of the CM
sketch, the Count sketch, and the CU sketch, respectively.

(a) ARE vs. Memory size (b) RMSE vs. Memory size

Fig. 2. Experiments on memory sizes.

IV. CONCLUSION

In this poster, we propose the Cuckoo sketch, a priority-
aware sketch that provides a better accuracy for important
flows. The Cuckoo sketch improves the accuracy of the
important flows by separating them from the unimportant ones:
a Cuckoo hash table is used to stored the important flows
with their exact size while the unimportant flows are stored
in a Count-Min sketch, which stores only an approximation
of the sizes. Our experimental results show that the Cuckoo
sketch outperforms its competitors, providing a better size
approximation for important flows.

REFERENCES

[1] CRISTIAN ESTAN and GEORGE VARGHESE. New directions in
traffic measurement and accounting: Focusing on the elephants, ignoring
the mice. Acm Transactions on Computer Systems, 21(3):p.270–313,
2003.

[2] Graham Cormode, Flip Korn, Shanmugavelayutham Muthukrishnan, and
Divesh Srivastava. Finding hierarchical heavy hitters in data streams. In
Proceedings 2003 VLDB Conference, pages 464–475. Elsevier, 2003.

[3] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta,
Yin Zhang, Peter A. Dinda, Ming Yang Kao, and Gokhan Memik.
Reversible sketches: Enabling monitoring and analysis over high-speed
data streams. Networking IEEE/ACM Transactions on, 15(5):1059–1072,
2007.

[4] Josep Sanjuaas-Cuxart, Pere Barlet-Ros, Nick Duffield, and Ramana
Kompella. Cuckoo sampling: Robust collection of flow aggregates under
a fixed memory budget. Proceedings IEEE Infocom, pages 2751–2755,
2012.

[5] Jiuhua Qi, Wenjun Li, Tong Yang, Dagang Li, and Hui Li. Cuckoo
counter: A novel framework for accurate per-flow frequency estimation
in network measurement. In 2019 ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS), pages 1–7.
IEEE, 2019.

[6] Graham Cormode and Shan Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms, 55(1):58–75, 2005.

[7] The CAIDA Anonymized Internet Traces.
http://www.caida.org/data/overview/.

[8] David MW Powers. Applications and explanations of zipf’s law. In
Proceedings of the joint conferences on new methods in language
processing and computational natural language learning, pages 151–
160. Association for Computational Linguistics, 1998.

[9] Lada A Adamic and Bernardo A Huberman. Zipf’s law and the internet.
Glottometrics, 3(1):143–150, 2002.

[10] Cristian Estan and George Varghese. New directions in traffic mea-
surement and accounting: Focusing on the elephants, ignoring the mice.
ACM Transactions on Computer Systems (TOCS), 21(3):270–313, 2003.

[11] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding fre-
quent items in data streams. In International Colloquium on Automata,
Languages, and Programming, pages 693–703. Springer, 2002.

[12] The source codes of our and other related algorithms.
https://github.com/Cuckoo-Sketch/Cuckoo-Sketch.

