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Abstract— Software switches are being deployed in SDN to1

enable a wide spectrum of non-traditional applications. The pop-2

ular Open vSwitch uses a variant of Tuple Space Search (TSS) for3

packet classifications. Although it has good performance on rule4

updates, it is less efficient than decision trees on lookups. In this5

paper, we propose a two-stage framework consisting of hetero-6

geneous algorithms to adaptively exploit different characteristics7

of the rule sets at different scales. In the first stage, partial8

decision trees are constructed from several rule subsets grouped9

with respect to their small fields. This grouping eliminates rule10

replications at large scales, thereby enabling very efficient pre-11

cuttings. The second stage handles packet classification at small12

scales for non-leaf terminal nodes, where rule replications within13

each subspace may lead to inefficient cuttings. A salient fact is14

that small space means long address prefixes or less nesting levels15

of ranges, both indicating a very limited tuple space. To exploit16

this favorable property, we employ a TSS-based algorithm for17

these subsets following tree constructions. Experimental results18

show that our work has comparable update performance to TSS19

in Open vSwitch, while achieving almost an order-of-magnitude20

improvement on classification performance over TSS.21
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Index Terms— Packet classification, SDN, openflow, open 22

vswitch, virtualization. 23

I. INTRODUCTION 24

SOFTWARE virtual switches are becoming an important 25

part of virtualized network infrastructures. Backed by 26

SDN, virtual switches enable many non-traditional network 27

functionalities like flexible resource partitioning and real-time 28

migration. Despite their advantages on flexibility and low-cost, 29

software switches have a performance concern. The prominent 30

Open vSwitch enforces forwarding policies with OpenFlow [2] 31

table lookups, which is essentially a multi-field packet clas- 32

sification problem [3], [4]. As an extensively studied bottle- 33

neck, packet classification in physical switches still relies on 34

expensive TCAMs because algorithmic solutions implemented 35

in software can hardly satisfy wire-speed forwarding in tra- 36

ditional network infrastructures [5]–[14]. With the advent of 37

SDN and NFV, efficient algorithmic solutions using commod- 38

ity memories such as DRAM/SRAM are becoming attractive 39

again. 40

The first step towards meeting this revitalized demand is 41

an understanding of the past research. Among existing algo- 42

rithmic packet classification research, decision tree [15]–[25] 43

and Tuple Space Search (TSS) [26]–[28] are two major 44

approaches. In decision tree-based schemes, the geometric 45

view of the packet classification problem is taken and a 46

decision tree is built. They work by recursively partitioning 47

the searching space into smaller subspaces until less than a 48

predefined number of rules are contained by each subspace. 49

In case a rule spans multiple subspaces, the problem of 50

rule replication happens and a rule copy is needed for each 51

overlapped subspace. This rule replication problem becomes 52

especially serious during the cutting operations at small scales, 53

where small rules across narrow spaces are to be separated 54

from their overlapped large rules. Thus, decision tree-based 55

schemes achieve fast lookup speed on packet classification, 56

but cannot support fast updates due to the notorious rule 57

replication problem. 58

Unlike traditional packet classification, OpenFlow has a 59

much higher demand for updates, which further exacerbates 60

the problem and makes decision tree algorithms inapplicable 61

in this context [28], [29]. In contrast, TSS partitions rules 62

into a set of hash tables (i.e., tuple space) with respect 63

to their prefix length. Thus, rule replication never happens 64

in TSS-based schemes, thereby enabling an average of one 65
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Fig. 1. The initial framework of CutTSS.

memory access for each rule update. As a result, the popular66

Open vSwitch implements a variant of TSS for its flow table67

lookups [28]. The primary reason is its good support for68

fast incremental rule updates, which is an important metric69

for SDN switches. Despite their advantages on fast updates,70

TSS-based schemes have a performance concern. For each71

incoming packet, TSS requires searching on every tuple,72

because the final matching is the one with the highest priority73

of matched rules from all tuples. This problem is especially74

serious for working on large space due to serious tuple75

expansion problem.76

To achieve fast lookup and update at the same time,77

we propose CutTSS as shown in Figure 1, which fosters the78

strengths and circumvents the weaknesses of decision tree and79

TSS-based schemes. To the best of our knowledge, this is80

the first solution that can keep the advantages of these two81

schemes: fast lookup and fast update. First, we adopt cutting82

techniques to build decision trees at large scales, so that each83

packet can shrink its searching space in a few steps for fast84

lookups. Second, to improve the update performance, we intro-85

duce TSS-based schemes to assist decision tree construction86

at small scales. Overall, CutTSS exploits the strengths of87

both decision tree and TSS to circumvent their respective88

weaknesses.89

To refine the framework of CutTSS, a two-stage framework90

consisting of heterogeneous algorithms is proposed. During the91

first stage, partial decision trees are constructed from several92

subsets grouped in their respective small fields (i.e., long prefix93

or narrow range), and leave some non-leaf terminal nodes94

(i.e., terminal nodes after pre-cuttings which contain rules95

more than the predefined number of rules for leaf nodes,96

as illustrated in Figure 6) for more efficient handling by97

TSS-based schemes. This grouping eliminates rule overlapping98

at large scales, thereby enabling very efficient pre-cuttings99

without any rule replications. The second stage handles packet100

classification at small scales for rules in non-leaf terminal101

nodes, where overlapping of rules within each subspace may102

become common that will lead to inefficient cuttings due103

to rule replications. Fortunately, a small space means long104

address prefixes or less nesting levels of ranges, both indi-105

cating a very limited tuple space. Based on this property,106

we employ a TSS-based algorithm called PSTSS [28] for107

rules in these subsets to facilitate tree constructions. Therefore,108

by exploiting the benefits of decision tree and TSS techniques109

adaptively, CutTSS not only offers fast updates and linear110

memory, but also pushes the performance of algorithmic111

packet classification on par to hardware-based solutions. The 112

main contributions of this paper include the following aspects: 113

• A scalable rule set partitioning algorithm based on the 114

observation that most rules have at least one small field 115

spanning across a narrow space, so the rule set can be 116

efficiently partitioned into a few non-overlapping subsets. 117

• A set of novel cutting algorithms that exploit the global 118

characteristics of the partitioned subset of rules, so that 119

the rules can be partitioned into smaller subsets without 120

rule replications. 121

• A two-stage framework combining decision tree and 122

TSS techniques, which can adaptively exploit different 123

characteristics of the rule sets at different scales. 124

We evaluate our algorithm using ClassBench [30], and the 125

results show that CutTSS is able to produce a very small 126

number of shorter trees with linear memory consumption even 127

for rule sets up to 100k entries. Compared to the TSS algo- 128

rithm in Open vSwitch, CutTSS achieves similar update per- 129

formance, but outperforms TSS significantly on classification 130

performance, achieving almost an order of magnitude improve- 131

ment on average. Our implementation of CutTSS is publicly 132

available on our website (http://www.wenjunli.com/CutTSS). 133

The rest of the paper is organized as follows. In Section II, 134

we first briefly summarize the related work. After that, 135

we make a set of observations and present the technical details 136

of CutTSS in Section III. Section IV provides experimental 137

results. Finally, conclusions are drawn in Section V. 138

II. BACKGROUND AND RELATED WORK 139

In this section, we first review the background and some 140

research efforts about the packet classification problem. After 141

that, we briefly describe two major threads of algorithmic 142

approaches: decision tree-based and tuple space-based packet 143

classification. Finally, we give some summaries. 144

A. The Packet Classification Problem 145

The purpose of packet classification is to enable differ- 146

entiated packet treatment according to a predefined packet 147

classifier. A packet classifier is a set of rules, with each 148

rule R consisting of a tuple of F field values (exact value, 149

prefix or range) and an action (e.g., drop or permit) to be 150

taken in case of a match. The rules in the classifier are 151

often prioritized to resolve potential multiple match scenarios. 152

Packet classification has been well studied for two decades, 153

but most of them focused on high-speed lookups, with very 154

little consideration on the performance of rule updates. How- 155

ever, unlike traditional packet classification, OpenFlow has a 156

much higher demand for updates, making most of traditional 157

algorithms inapplicable in the context of SDN. An example 158

OpenFlow classifier is shown in Table I. 159

Packet classification is a hard problem with high complexity. 160

From a geometric point of view, packet classification can be 161

treated as a point location problem, which has been proved that 162

the best bounds for locating a point are either Θ(log N) time 163

with Θ(NF ) space, or Θ((logN)F−1) time with Θ(N) space 164

for N non-overlapping hyper-rectangles in F-dimensional 165

space [31]. Therefore, the worst-case mathematical complexity 166
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TABLE I

AN EXAMPLE OPENFLOW 1.0 CLASSIFIER

TABLE II

AN EXAMPLE OF 2-TUPLE CLASSIFIER

of algorithmic packet classification is extremely high, which167

makes it impractical to achieve a wire-speed requirement168

within the capabilities of current memory technology. But169

fortunately, packet classification rules in real-life applications170

have some inherent characteristics that can be exploited to171

reduce the complexity. These inherent characteristics provide172

a good substrate for the exploration of practical algorithmic173

solutions [1], [15]–[18], [20], [21], [23], [26], [32]–[40].174

Among them, decision tree and Tuple Space Search (TSS)175

are two major approaches. Next, we briefly summarize the176

related work on these two techniques. For the convenience of177

description, we use a small example of 2-tuple rule set shown178

in Table II for subsequent discussions. Figure 2(a) shows the179

geometric representation of the example rules given in Table II.180

B. Decision Tree-Based Packet Classification181

In decision tree-based schemes, the geometric view of the182

packet classification problem is taken and a decision tree183

is built. The root node covers the whole searching space184

containing all rules. They work by recursively partitioning185

the searching space into smaller subspaces until less than a186

predefined number of rules are contained by each subspace.187

In case a rule spans multiple subspaces, the undesirable rule188

replication happens (e.g., R3, R4 and R6 in Figure 2(b)).189

When a packet arrives, the decision tree is traversed to find a190

matching rule at a leaf node. According to the partitioning191

method on searching space, current decision trees can be192

categorized into two major approaches: equal-sized cutting and193

equal-densed cutting (i.e., splitting).194

1) Classical Decision Tree Schemes: Cutting based195

schemes, such as HiCuts [15] and HyperCuts [16], separate196

the searching space into many equal-sized subspaces using197

local optimizations. HiCuts cuts the searching space into many198

equal-sized subspaces recursively until the rules covered by199

each subspace is less than the pre-defined bucket size called200

binth. To reduce memory consumption, HiCuts uses some201

heuristics to select the cutting dimension and decides how202

many subspaces should be cut using a space optimization203

function. Figure 2(b) shows the decision tree generated by204

Fig. 2. Review on related decision trees (binth = 4).

HiCuts, where the Field X is cut into four equal-sized sub- 205

spaces (i.e., [0,3], [4,7], [8,11], [12,15]), and is further cut 206

into two equal-sized subspaces (i.e., [12,13], [14,15]) to finish 207

the decision tree construction. HyperCuts can be considered 208

as an improved version of HiCuts, which is more flexible in 209

that it allows cutting on multiple fields per step, resulting in a 210

fatter and shorter decision tree. Besides, several optimization 211

techniques are adopted in HyperCuts, such as node merging, 212

rule overlap, region compaction and pushing common rule 213

subsets upwards. But both HiCuts and HyperCuts have the 214

same rule replication problem for rules spanning multiple 215

subspaces, especially for large rule tables. Figure 2(c) shows 216

the decision tree generated by HyperCuts. 217

In order to reduce the rule replications suffered from 218

equal-sized cuttings, schemes based on splitting divide the 219

searching space into unequal-sized subspaces containing a 220

nearly equal number of rules. HyperSplit [17], a well-known 221

splitting-based decision tree scheme, splits the searching space 222

into two unequal-sized subspaces containing a nearly equal 223

number of rules. Due to its simple binary separation in 224

subspaces, the worst-case search performance of HyperSplit 225

is explicit. However, even with the optimized binary space 226

splitting, the memory consumption of HyperSplit still grows 227

exponentially as the number of rules increases. Figure 2(d) 228

shows the decision tree generated by HyperSplit, we can see 229

that in each internal tree node, HyperSplit splits the selected 230

field into two unequal-sized subspaces, with each subspace 231

covering rules as balanced as possible. 232

2) Recent Decision Tree Schemes: EffiCuts [18], a well- 233

known cutting based scheme, observed that real-life rules 234
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exhibit several inherent characteristics, and a good rule set235

partitioning can reduce rule replications dramatically. Thus,236

instead of building a single decision tree for all rules, EffiCuts237

separates rules into several subsets with each subset creating its238

own decision tree independently using a variant of HyperCuts.239

With all F fields considered, up to 2F decision trees can be240

generated for F-tuple classifiers, resulting in a lot of overall241

memory accesses. In contrast, HybridCuts [20] separates rules242

based on a single field rather than all F fields in EffiCuts, thus,243

HybridCuts achieves a significant reduction in the number of244

subsets (i.e., from 2F to F+1), which in turn reduces the245

overall memory accesses. However, due to the employment of246

HyperCuts, the worst-case search performance of HybridCuts247

is unbounded. Worse still, with the increase of the number248

of rule fields and the size of classifiers, the performance of249

HybridCuts drop dramatically due to the deteriorating rule250

replications. Instead of using the most significant bits for cuts,251

ByteCuts [23] introduces a new cutting scheme that uses any252

range of bits to build decision trees. However, ByteCuts can253

achieve high-speed construction of trees but not fast updates254

of rules.255

In order to reduce rule replications suffered from splitting,256

ParaSplit [19] proposes a rule set partitioning algorithm to257

reduce rule set complexity, which significantly reduces the258

overall memory consumption in HyperSplit. However, ParaS-259

plit employs a complex heuristic for rule set partitioning,260

which may require tens of thousands of iterations to reach261

an optimal partitioning. To achieve better scalability for dif-262

ferent rule sets, SmartSplit [21] separates rules into at most263

four subsets to build balanced trees dynamically, achieving264

high-speed classification by leveraging the logarithmic search265

time of balanced search trees. By partitioning rules into several266

sortable subsets and building a MITree for each subset, Parti-267

tionSort [22] achieves logarithmic classification and update268

time for each subset simultaneously. Due to the stringent269

constraints on partitioning, PartitionSort requires much more270

trees than SmartSplit, resulting in slower classification. Instead271

of using a single cutting or splitting technique to build trees,272

CutSplit [1], the preliminary version of the proposed CutTSS,273

introduces a practical framework that can exploit the benefits274

of cutting and splitting techniques adaptively. However, due to275

the boring rule replications in its post-splitting stage, CutSplit276

can only achieve incremental updates by rebuilding sub-trees,277

consuming up to a few milliseconds in some cases, far more278

behind the wire-speed requirement of incremental updates.279

C. Tuple Space-Based Packet Classification280

In tuple space-based schemes, rules are partitioned into a281

set of hash tables (i.e., tuple space) based on easily computed282

rule characteristics. Thus, rules can be inserted and deleted283

from hash tables in amortized one memory access, resulting284

in faster updates. When a packet arrives, these partitioned hash285

tables are individually searched to find the best matching.286

1) Classical Tuple Space Schemes: Tuple Space Search287

(TSS) [26], the basic tuple space-based packet classification,288

decomposes a classification query into a set of exact match289

queries in hash tables. TSS partitions rules into different hash290

TABLE III

TSS BUILDS 4 TUPLES FOR RULES GIVEN IN TABLE II

tables based on a set of pre-computed tuples. Each tuple 291

can be defined by concatenating the actual bits used in each 292

field in order, so that a hash key can be created to map the 293

rules of that tuple into its corresponding hash table. During 294

classification or updates, those same bits are extracted from 295

the packet or rule as a hash key for searches. For example, 296

rules R1 and R2 shown in Table II should be placed in the 297

same tuple space, because both of them use three and zero of 298

the bits in their respective two fields. Thus, TSS builds four 299

tuple spaces as shown in Table III for rules given in Table II. 300

As an improvement, the Pruned Tuple Space Search (PTSS) 301

algorithm [26] reduces the scope of the exhaustive search by 302

performing a search on individual rule fields to find a subset 303

of candidate tuple spaces. However, both TSS and PTSS have 304

low classification speed, because the number of tuple space is 305

large and each tuple space must be searched for every packet. 306

This problem becomes more serious for classifiers with an 307

increased number of fields such as OpenFlow classifiers. 308

2) Recent Tuple Space Schemes: TupleMerge [27], 309

a recently proposed tuple space scheme, improves upon TSS 310

by relaxing the restrictions on which rules may be placed in the 311

same tuple space. By merging tuple spaces that contain rules 312

with similar characteristics together, TupleMerge can reduce 313

the number of candidate tuple spaces and thus the overall 314

classification time. However, with more tuple spaces merged, 315

its performance may be affected due to hash collisions. Priority 316

Sorting Tuple Space Search (PSTSS) [28], which is used in 317

Open vSwitch, improves the performance of TSS by sorting 318

tuple spaces based on a pre-computed priority of each tuple 319

space (i.e., Tuple Priority column in Table III). By searching 320

tuple spaces in the descending order of priority, the search 321

can terminate as soon as a match is found because it has the 322

highest priority among all possible matched rules. Although 323

PSTSS can improve average performance compared to TSS, 324

its worst-case performance is still the same as TSS. 325

D. Summary of Prior Art 326

Clearly, decision tree-based packet classification has been 327

actively investigated for two decades. But as far as we know, 328

none of them can make an excellent trade-off among all key 329

metrics. In particular, most of them can achieve high-speed 330

packet classification but not fast updates, which seriously 331

limit their scalability in the era of SDN. In contrast, tuple 332

space-based schemes have been the de-facto choice in soft- 333

ware switches, because they support fast updates with only 334

linear memory consumption. However, these schemes still 335

suffer from low classification performance especially for large 336
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classifiers, falling short of the needs of high-speed require-337

ments in fast-growing networks.338

III. CUTTSS: ENJOYING BOTH WORLDS OF EFFICIENT339

CLASSICATION AND RULE UPDATE340

In this section, we first introduce ideas behind the design of341

CutTSS. Then, we propose a scalable partitioning algorithm342

based on experimental observations, which can eliminate rule343

overlapping at large scales. To exploit these characteristics of344

partitioned subsets, a set of novel cuttings are designed to build345

partial trees without any rule replications in the first stage.346

After that, a two-stage framework consisting of heterogeneous347

algorithms is proposed to build decision trees for partitioned348

subsets. Finally, we give more insights on the effectiveness of349

CutTSS from both theoretical and experimental aspects.350

A. Ideas & Framework351

According to the above review and analyses given in352

CutSplit [1], we know that cutting techniques can separate353

searching space into smaller subspaces quickly for faster354

classification, but it suffers from serious rule replications.355

In contrast, TSS can completely avoid rule replications and356

support fast incremental updates, but it has longer classifica-357

tion time due to tuple expansions, especially for rule sets at358

large scales. Therefore, to foster the strengths and circumvent359

the weaknesses of decision tree and TSS schemes, the idea360

directly perceived is to combine the following two strategies:361

• Pre-Cutting at large scales: Cutting-based partitioning362

on the searching space at large scales, which can reach363

any subspaces at small scales with very few steps.364

• Post-TSS at small scales: TSS-based searching on sub-365

spaces at small scales, which can avoid inefficient cutting366

of decision trees.367

Figure 1 shows the initial framework of the following368

CutTSS. However, in order to design scalable algorithms to369

meet the above design goals, an effective combination of these370

two ideas still faces several difficulties and challenges:371

• Low memory access: Although partitioning can reduce372

rule overlapping significantly, it will increase the overall373

memory accesses. Thus, how to generate rule subsets as374

few as possible?375

• Low memory consumption: Since cutting on rules376

overlapped at different scales will lead to serious rule377

replications, how to avoid rule replications during the first378

cutting stage?379

• Low update time: Since many rules are overlapped and380

concentrated in some subspaces at small scales, which381

will lead to inefficient cuttings due to rule replications.382

How to avoid rule replications in these subspaces at small383

scales?384

The answers to these questions are the key ideas in this385

paper. Our solution can be summarized in the following three386

steps:387

• Step 1: Partitioning based on very few small fields: In388

order to eliminate rule overlapping at large scales and389

reduce the number of partitioned subsets, we separate390

Fig. 3. The refined framework of CutTSS.

rules into subsets based on their characteristics shared 391

in very few small fields. 392

• Step 2: Pre-cuttings by exploiting the global charac- 393

teristics of the partitioned subsets: After partitioning 394

the rule set, we get a set of favorable fields for each 395

partitioned subset, where a set of simpler cutting algo- 396

rithms without prior optimizations can be applied for 397

space partitioning. 398

• Step 3: TSS-assisted cutting trees for fast updates: 399

Thanks to the clever partitioning and pre-cuttings without 400

any rule replications, most of the rules can be separated 401

into leaf nodes for the linear search, except for a small 402

fraction of concentrated rules at small scales. For these 403

non-leaf terminal nodes, we employ a TSS-based algo- 404

rithm to facilitate the rest of tree constructions. 405

Based on these ideas, we give the refined framework of 406

the proposed CutTSS shown in Figure 3. Overall, a complete 407

packet classification framework with two heterogeneous stages 408

exploiting favorable properties in their respective space scales 409

is in place. Next, we give more details about CutTSS from 410

the following three aspects: rule set partitioning, decision tree 411

construction and decision tree operation. 412

B. Rule Set Partitioning Based on Small Fields 413

Classification rules in real-life applications have structural 414

redundancies and several inherent characteristics that can be 415

exploited to reduce the complexity. Thus, we use the publicly 416

available ClassBench and OpenFlow-like rule tables for study 417

to make observations on common characteristics of rule sets. 418

It should be noted that the two OpenFlow-like rule tables 419

are supported by the authors of ParaSplit [19], which were 420

generated based on 216 real-life rules from enterprise cus- 421

tomers. We first give a few definitions, then we present the 422

key observations related to the following discussions on rule 423

set partitioning. 424

1) Definitions: Given an N-field rule R = (F1, …Fi, …, 425

FN ) and a threshold value vector T = (T1, …Ti, …, TN ), 426

where i ∈ {1, 2, …, N}, we first give some definitions for 427

field Fi as follows: 428

• Fi is a big field: the range length of field Fi > Ti; 429

• Fi is a small field: the range length of field Fi ≤ Ti. 430

Based on the above definitions for field Fi, we further give 431

some definitions for R as follows: 432
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Fig. 4. The ratio of big rules for seed-ipc rule set.

TABLE IV

STATISTICAL RESULTS FOR 5-TUPLE & OPENFLOW-LIKE RULES

• R is a big rule: ∀i ∈ {1, 2, …, N}, Fi is a big field;433

• R is a k-small rule: R contains at least k small fields.434

For a classical 5-tuple rule, since the protocol field is435

restricted to a small set of values (e.g., tcp, udp), we just436

consider the other four fields in this paper. Then the thresh-437

old value vector T for 5-tuple rules is simplified to a438

four-dimensional vector T = (TSA, TDA, TSP , TDP ). For the439

sake of convenience in writing, we use a logarithmic vector440

T’ to represent the threshold value vector T equivalently. For441

example, if we set threshold value vector T = (216, 216,442

28, 28), then index logarithmic T’ = (16, 16, 8, 8).443

2) Observations: Based on the above definitions, we make444

some statistical experiments for several rule sets from Class-445

Bench. There are three types of rule sets: ACL (Access446

Control List), FW (Firewall) and IPC (IP Chains). Figure 4447

shows the ratio of big rules under different thresholds for448

seed IPC rule set. Due to length limitation, more results for449

ACL and FW rule sets are publicly available on our website450

(http://www.wenjunli.com/CutTSS). It is clear that the ratio of451

big rules is very low even under very demanding thresholds.452

For example, assume T’ = (16, 16, 8, 8), the ratio of big453

rules for three types of rule set are all less than 0.01, that is454

to say, less than 1% rules are big rules under T = (216, 216,455

28, 28). This indicates that the vast majority of the rules have456

at least one small field satisfying a threshold T. Essentially,457

this observation is consistent with previous observations. Oth-458

erwise, a large number of big rules may cause serious space459

overlapping which is contrary to previous observations that the460

number of rules or address prefixes matching a given packet461

is typically five or less.462

Table IV shows statistical results for 5-tuple rule sets and463

OpenFlow-like rule tables. Clearly, this observation is still464

effective for OpenFlow-like rule tables: the vast majority of 465

rules have at least one small field. 466

3) Rule Set Partitioning: Based on the above observations, 467

we propose a partitioning algorithm to separate rules into sev- 468

eral subsets. The purpose of our partitioning is to obtain a few 469

subsets without duplicates among each other. For each subset, 470

all contained rules should share a common characteristic for 471

a set of rule fields: small field. Next, we introduce a simple 472

heuristic as follows: 473

–Step1: Removal of big rules. Since the number of big rules 474

is negligible, we can simply apply PSTSS for these rules. 475

–Step2: Selection of partitioning rules. We first count the 476

distinct values for each field, then select a few fields with a 477

large number of distinct values. The selection makes sure that 478

for the vast majority of rules, there is at least one selected field 479

with a small value. The rest rules without any small value in 480

the selected fields will be treated as big rules. 481

–Step3: Fields-wise partitioning. Assume that M fields have 482

been selected for F-tuple rule sets. We categorize rules based 483

on field length (i.e., big or small) in all selected fields, leading 484

to at most 2M -1 subsets. This partitioning is different from 485

EffiCuts from two perspectives: fewer fields and more flexible 486

definition of small/big field, which enables much more flexible 487

partitioning to generate fewer subsets. 488

–Step4: Selective subset merging. For subsets containing 489

very few rules, we can merge these rules into other subsets 490

that have fewer small fields. Due to the consideration of its 491

relevance and space limitation, we do not elaborate on this 492

algorithm in this paper. Note that our merging will not lead to 493

rule replication in our decision trees, which is quite different 494

from EffiCuts. 495

Take rules in Table I as an example, we first move R5 into 496

a big rule subset, then we calculate the number of distinct 497

small fields in each field and pick ip_src & ip_dst as the two 498

most distinct fields. Thus, we can partition the rule set into four 499

subsets: big_subset = {R5}, (smallip_src, smallip_dst) = {R1}, 500

(bigip_src, smallip_dst) = {R3} and (smallip_src, bigip_dst) = 501

{R2, R4}. Finally, we can merge (smallip_src, smallip_dst) 502

with (bigip_src, smallip_dst) for a new subset (arbitraryip_src, 503

smallip_dst) = {R1, R3}, where arbitrary field contains both 504

small and big field. Thus, three subsets are generated for the 505

sample rule set: big_subset = {R5}, (smallip_src, bigip_dst) = 506

{R2, R4} and (arbitraryip_src, smallip_dst) = {R1, R3}. 507

C. Decision Tree Construction: Pre-Cutting & Post-TSS 508

From Figure 3, we can see that a TSS-assisted tree will be 509

built for each partitioned subset (except for the big subset). 510

Thus, we will give more details about the tree building algo- 511

rithm in CutTSS. For the convenience of description, we will 512

use the rule set shown in Table V as a working example, where 513

no big rules are included. Based on the above definitions of 514

rule field, we can label each rule with a field vector as shown 515

in Table V. Based on these field labels, the fourteen rules can 516

be partitioned into three subsets as shown in Figure 5. For each 517

subset, we then build the decision tree through the following 518

two steps: pre-cutting and post-TSS. 519

1) Pre-Cutting: Fixed Cuttings on Small Fields: The ratio- 520

nale behind the above strategy of rule set partitioning is simple: 521
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TABLE V

A NEW EXAMPLE OF 2-TUPLE CLASSIFIER (TX = 4, TY = 4)

Fig. 5. Ruleset partitioning example (TX = 4, TY = 4).

by grouping rules that are narrow in the same fields, rules522

that are large in these fields are excluded, and intensive rule523

replications caused by these excluded rules are eliminated,524

thereby enabling very efficient cuttings. What is more, this525

grouping can completely eliminate rule replications at large526

scales (i.e., larger than small field’s threshold) for prefix fields,527

because each prefix can never be overlapped with two shorter528

prefixes with the same prefix length. To exploit these favorable529

characteristics of partitioned subsets, we introduce a simple530

but effective cutting algorithm called Fixed Cuttings (FiCuts),531

which will be applied in the first stage partial tree construction.532

FiCuts derives from HiCuts and HyperCuts, but with a533

better global view on the characteristics of the rule set.534

As shown in Figure 5(b), the rules in the subset are all small535

in Field X. This facilitates cuts along the Field X without536

any rule replications at large scales. Since the rules have been537

grouped into several subsets, with each subset sharing the538

same small fields, FiCuts can utilize this information to exploit 539

efficient cuttings. Compared to HiCuts and HyperCuts, FiCuts 540

has several differences in cutting details as follows: (1) Instead 541

of changing cutting dimensions dynamically, FiCuts conducts 542

cuttings on the subset along a set of fixed dimensions, where 543

the rules are small in these fields; (2) Instead of deciding 544

how many subspaces should be cut per step dynamically, 545

the number of cuts per step in CutTSS is a fixed value 546

(i.e., MAXCUTS, defined to control the number of empty tree 547

node); (3) None of the prior optimization methods is required 548

in FiCuts, making it simple enough to achieve fast lookups and 549

updates; (4) As FiCuts is only designed for the construction 550

of partial trees in the first stage, its cutting processes will 551

stop not only in the leaf nodes containing rules less than the 552

pre-defined binth, but also in the nodes located at small scales 553

(i.e., cutting space smaller than the threshold of small field). 554

Thus, for the subsets containing one or more small fields, 555

FiCuts will cut on that single or multiple small fields to build 556

partial trees as illustrated in Figure 6. We can see from the 557

partial trees that rule replication can be completely avoided 558

and all rules are located in the bottom nodes of the tree 559

(i.e., leaf nodes or non-leaf terminal nodes). Besides, as none 560

of the prior optimization methods is adopted in equal-sized 561

cutting processes, each node in the partial trees can be easily 562

indexed by a string of bits, which can be used as an array 563

key during lookups and updates. For each subset, FiCuts 564

continues its cutting processes until the number of rules is 565

less than the threshold for linear search or the cutting space 566

is smaller than the threshold of small field. Take the subsets 567

shown in Figure 6 as an example, FiCuts just works fine 568

for the second subset: it builds the whole tree as illustrated 569

in Figure 6(e), in which all rules are partitioned into leaf 570

nodes. However, Figure 6(d) shows a different scenario, where 571

pure FiCuts does not solve the problem completely, and only 572

a partial tree can be constructed. When FiCuts reaches the 573

rightmost cutting subspace in Figure 6(a), it is no longer 574

effective by continuing cutting along Field X, because the 575

cutting space in Field X is now smaller than TX . Therefore, 576

it is necessary to resort to other more effective methods to 577

continue tree constructions at small scales. 578

2) Post-TSS: Tuple Space Assisted Cutting Trees: After the 579

first stage of pre-cuttings, two types of terminal nodes will be 580

generated in the built partial trees: leaf node (i.e., #rules ≤ 581

binth) and non-leaf terminal node (i.e., #rules > binth). 582

As a very limited number of rules are contained in leaf 583

nodes, we can simply conduct a linear search on rules as in 584

traditional decision trees. Thus, the second stage is mainly 585

designed to handle packet classification on non-leaf terminal 586

node. It is not difficult to see that the searching space has 587

been separated into much smaller subspaces after pre-cuttings, 588

where each subspace contains much fewer rules compared with 589

the original rule set. On the other hand, a small space means 590

long address prefixes or less nesting levels of ranges, both 591

indicating a very limited tuple space. Based on this property, 592

we employ the PSTSS for rules in the non-leaf terminal nodes 593

to facilitate tree constructions. Thus, for the two partial trees 594

shown in Figure 6, we can build their complete trees without 595

any rule replications as illustrated in Figure 7. 596
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Fig. 6. The first stage partial trees built by FiCuts (MAXCUTS = 4, binth = 2).

Fig. 7. The complete TSS-assisted decision trees in CutTSS.

Up to now, three complete decision trees have been built597

for all rules given in Table V, as shown in Figure 6(e) and598

Figure 7. Overall, by exploiting the benefits of decision tree599

and TSS techniques adaptively, CutTSS can build TSS-assisted600

decision trees without any rule replications, thereby enabling601

fast updates and linear memory consumption.602

3) Refined Optimizations: To further improve the perfor-603

mance, several optimizations have been adopted in our imple-604

mentation as follows:605

–Optimization 1: Priority sorting on partitioned subsets. For 606

each incoming packet, CutTSS requires searching on every 607

partitioned subset, even if a rule has been matched in an 608

early subset. We improve on this by tracking the priority 609

of partitioned subsets as that in PSTSS and PartitionSort 610

algorithms, where the priority of each subset is the maximum 611

priority of all the rules in it. By searching from greatest to 612

least maximum priority on subsets, each lookup can terminate 613

as soon as a rule is matched in an early subset. 614

–Optimization 2: Dynamic thresholds on terminal leaf 615

nodes. For the terminal nodes after pre-cuttings, we adopt 616

a dynamic threshold to distinguish leaf nodes and non-leaf 617

nodes. The idea of this optimization is derived from the 618

performance comparison for a lookup between linear search 619

and TSS search. For example, the latest version of Open 620

vSwtich (http://www.openvswitch.org) implements the PSTSS 621

based on a variant of cuckoo hash [41], [42], where multiple 622

hash lookups are required for each TSS lookup in Open 623

vSwtich, which is much more complex and time-consuming 624

than a linear search. Assume that each TSS lookup takes N 625

times than a linear rule search, we can set the threshold as 626

N*M, where M is the number of tuples in the terminal node. 627

–Optimization 3: Greedy thresholds on small fields. Essen- 628

tially, small field is a relative concept of space scale. It is 629

not difficult to see that narrower small fields may enable more 630

effective pre-cuttings and less tuple spaces in non-leaf terminal 631

nodes. However, narrower small fields may also lead to more 632

rules in the big subset as illustrated in Figure 4, which may in 633

turn increase the number of tuples in the big subset. To make 634

a good trade-off, we select the thresholds on small fields by 635

running a greedy algorithm during partitioning. The strategy of 636
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Fig. 8. The framework of classification and update in CutTSS.

selecting thresholds in our implementation is simple: choose637

one that achieves the least average memory access.638

D. Decision Tree Operation: Classification & Update639

In this subsection, we complete the picture of CutTSS from640

the following aspects: packet classification and rule update.641

1) Packet Classification: For each incoming packet,642

CutTSS classifies the packet based on the framework shown643

in Figure 8(a). For each decision tree, CutTSS conducts644

classification in two steps: (1) Search the partial tree to find645

a terminal node; (2) Lookup for the best matching rule from646

the matched terminal node. Assuming that a 2-field incoming647

packet is Pi = <1000, 0010>, we next give a working example648

for the rule set shown in Table V, where three decision trees649

are built as shown in Figure 6(e) and Figure 7: (1) For the650

decision tree shown in Figure 6(e), Pi can traverse this tree651

based on its first two bits in Field Y (i.e., 00). Thus, the first652

child node is found, and no rule is matched in this subset;653

(2) For the decision tree shown in Figure 7(a), Pi can traverse654

this tree based on its first two bits in Field X (i.e., 10). Thus,655

the third child node is matched, and R3 is the best matching656

rule based on linear search; (3) For the decision tree shown657

in Figure 7(b), Pi can traverse this tree based on its first658

bit in Field Y&X (i.e., 0&1). Thus, the second child node is659

matched, and R13 is the best matching rule based on PSTSS660

search. Finally, R3 with a higher priority will be the best661

matching rule for Pi.662

2) Rule Update: For each updated rule, CutTSS updates663

the rule based on the framework shown in Figure 8(b).664

Unlike the above packet classification where all subsets have 665

to be searched, CutTSS can perform each rule update just 666

in a single subset, because the updated or inserted rule can 667

only appear in a specific subset in CutTSS, depending on 668

its field label vector. CutTSS performs rule updates in a tree 669

in two steps: (1) Search the partial tree to find a terminal 670

node; (2) Update (e.g., insert or delete) the rule pointed by 671

the matched terminal node. When searching the partial tree 672

for rule updates, the specific bits in each rule’s small fields 673

are used as a key for searching. Assuming that there are three 674

update operations as follows: (1) Delete rule R4 = <1001, 675

00**>; (2) Insert rule R15 = <1***, 010*>; (3) Insert rule 676

R16 = <110*, *>, we next give a working example for the 677

rule set shown in Table V. By calculating the field label of R4 678

(i.e., <small, small>), we known that R4 may only appear in 679

the decision tree shown in Figure 7(b), which is built for the 680

subset shown in Figure 5(d). Then, R4 can traverse this tree 681

based on its first bit in Field Y&X (i.e., 0&1). Thus, the second 682

child node is matched, and then R4 will be updated in this 683

terminal node. After removing R4 from the PSTSS classifier, 684

the number of rules in this node is reduced to the threshold of 685

binth. Thus, we can replace this non-leaf terminal node with 686

a new leaf node as shown in Figure 9(c). Similarly, we can 687

first calculate the field label of R15 (i.e., <big, small>) and 688

R16 (i.e., <small, big>), and then conduct updates as R4 in 689

the corresponding trees shown in Figure 6(e) and Figure 7(a), 690

as illustrated in Figure 9. 691

E. Rationale Behind Effectiveness 692

To reveal the rationale behind the effectiveness of CutTSS, 693

we next give more insights from both theoretical and experi- 694

mental aspects as follows. 695

1) Theoretical Analysis: Essentially, CutTSS is a two-stage 696

tree framework built from the following two stages: 697

(1) Coarse-grained pre-cutting with low memory consumption; 698

(2) Fine-grained post-TSS with high performance. For the 699

first-stage pre-cuttings in CutTSS, rule replications can be 700

avoided completely, thereby enabling linear memory consump- 701

tion for the partial trees. For the following tree constructions, 702

CutTSS adopts PSTSS with a linear memory consumption 703

to handle packet classification in non-leaf terminal nodes. 704

Thus, for a F-dimensional subset containing N distinct rules, 705

the memory consumption of CutTSS is Θ(N), which is the 706

best theoretical bound proved in previous work as described 707

in Section II(A). For each incoming packet or updated rule, 708

CutTSS performs packet classification or rule update in two 709

steps: (1) Search the partial tree based on the specific bits 710

in each packet or rule in Θ(1) time; (2) Perform classi- 711

fication or update in the matched terminal node containg- 712

ing M rules (M≤N). Based on the above Section II(A), 713

we can conclude that the worst-case time complexity of 714

CutTSS is Θ((logM)F−1). Thus, compared to the theoretical 715

worst-case time complexity (i.e., Θ((logN)F−1)), CutTSS 716

achieves Θ((logM N)F−1) times improvement. We then con- 717

sider the average worst-case time complexity of CutTSS 718

as follows: Assuming that all rules are evenly distributed, 719

the width and the threshold value of the small field are 720
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Fig. 9. The new decision trees after three rule updates.

Fig. 10. Rule distribution density at different sized small scales.

2W and 2T , we can conclude that the average worst-case721

time complexity of CutTSS is Θ((logMA)F−1), where MA =722

N*2(T−W ). Thus, from the perspective of theoretical analysis,723

the rational behind the effectiveness of CutTSS is essentially to724

perform the packet classification in a subspace at small scales725

that contains fewer rules. Although the theoretical bounds726

tell us that it is infeasible to design a single algorithm that727

can perform well in all cases, real-life classifiers have some728

inherent characteristics that can be exploited to reduce the729

complexity. Next, we give more insights from the aspect of730

experimental analysis.731

2) Experiential Analysis: We conduct experiential analysis732

based on the above three seed rule sets, to show more insights733

on the feature of rule distribution from two aspects: (1) Num-734

ber of non-leaf terminal nodes at small scales; (2) Average735

number of rules at small scales. Take the subset shown736

in Figure 5(d) as an example, we can say that six rules are737

concentrated at three (over 4*4 = 16) distinct subspaces at738

small scales and the average number of rules is two. Among739

the three subspaces, only one of them contains rules more than740

binth, which will be handled by PSTSS in the tree. Based on741

this example, we now give more details about experiential742

analysis. Figure 10(a), (b) and (c) shows the number of743

subspaces containing rules more than binth at different sized744

small scales. We can see that although rules are distributed in745

many subspaces, the vast majority of them contain a small746

number of rules. In other words, the number of non-leaf 747

terminal nodes in CutTSS is much smaller than the number 748

of leaf nodes in the trees, thereby making CutTSS more like a 749

traditional decision tree which can achieve high performance 750

on classification inherently. That’s why we call this tree as a 751

TSS-assisted tree in CutTSS. Figure 10 (d), (e) and (f) shows 752

the average number of rules over all subspaces that contain 753

rules. We can see that even under very loose thresholds, 754

the number of rules after the first stage pre-cutting is much 755

smaller than the original rule set size, thereby enabling high 756

performance on both search and update. 757

IV. EXPERIMENTAL RESULTS 758

In this section, we present some experimental results of 759

CutTSS. We start with an overview of our experimental 760

methodology. After that, we evaluate our algorithm from the 761

following key aspects: tree construction, packet classification 762

and rule update respectively. 763

A. Experimental Methodology 764

We compare CutTSS with three algorithms: PSTSS, 765

CutSplit and PartitionSort. Priority Sorting Tuple Space 766

Search (PSTSS) is the algorithm with the fastest update 767

performance, which is used in Open vSwitch for flow table 768

lookups. CutSplit is the state-of-the-art decision tree with the 769
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Fig. 11. Number of partitioned subsets.

Fig. 12. Construction time.

fastest classification performance. ParitionSort is the state-of-770

the-art splitting based tree with the best performance trade-off771

between classification and update. To facilitate fair compar-772

ison, we have made some modifications to the open-source773

code of the other three algorithms, and their performances774

are essentially not affected by our modification. We are very775

grateful to the authors of these algorithms, their open-source776

codes and selfless personal help enable us to make a fair777

and justifiable comparison. As a response, our implemen-778

tation of CutTSS is also publicly available on our website779

(http://www.wenjunli.com/CutTSS).780

1) Rule Sets: The rule sets used in our experiments are781

generated using ClassBench, whose size varies from 1k to782

100k. There are three types of rule sets: ACL, FW and IPC.783

Each rule set is named by its type and size, e.g., FW_1k784

refers to the firewall rule set with about 1000 rules. For785

each size, we generate 12 rule sets respectively based on786

12 seed parameter files (i.e, 5 ACL, 5 FW and 2 IPC) in787

ClassBench [30].788

2) Simulation Environment: We measure classification time789

by classifying all packets in trace files generated by Class-790

Bench when it constructs the corresponding rule set. In order791

to evaluate the actual lookup performance of classification792

algorithms, we conduct experiments by omitting caching in793

the fast path and consider only slow path classification for794

each incoming packet. To evaluate the performance of the795

incremental update, we measure update time as the time796

required to conduct one rule insertion or deletion. For each797

rule set, we shuffle rules randomly to generate a sequence of798

update operations, where half of the insertions are randomly799

mixed with half of the deletions.800

3) Machine Environment: All experiments are run on a 801

machine with AMD Radeon 5-2400G CPU@3.6GHz and 8G 802

DRAM. The operating system is Ubuntu 16.04. To reduce the 803

CPU jitter error, we take the average results by running ten 804

times for each evaluation circularly. 805

B. Evaluation on Construction 806

1) Number of Subsets: Since the number of partitioned 807

subsets in CutSplit is the same as in CutTSS, Figure 11 shows 808

the number of subsets in CutTSS, PSTSS and PartitionSort. 809

We find that CutTSS produces a relatively stable number of 810

subsets regardless of the type and size of rule sets, averaging at 811

3.7 subsets across all of the rule sets. This favorable property 812

makes CutTSS more suitable for concurrency. In contrast, 813

the number of partitioned subsets in PSTSS and PartitionSort 814

ranges from 2 to 368 with an average of 151.7 and 20.9 subsets 815

respectively. 816

2) Construction Time: Figure 12 shows the construction 817

time of CutTSS as well as PSTSS, PartitionSort and CutSplit. 818

Clearly, PSTSS is the fastest one among them. In contrast, 819

CutTSS takes a little more time than PSTSS because of its 820

partial tree constructions in the pre-cutting stage. However, 821

even for the rule sets up to 100k, CutTSS can still build 822

decision trees in about one second, much faster than previous 823

decision trees such as EffiCuts and SmartSplit that require 824

almost ten minutes. We can also find that the construction 825

time of CutTSS increases almost linearly with the rule set 826

size, which makes it well suitable for larger classifiers. 827

3) Memory Consumption: Figure 13 shows the memory 828

consumption of CutTSS as well as PSTSS, PartitionSort 829
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Fig. 13. Memory consumption.

and CutSplit. Our experimental results show that our CutTSS830

requires less space than other algorithms, consuming an aver-831

age of 25.8 Byte/Rule across all of the rule sets, while it832

requires 45.4 Byte/Rule, 50.9 Byte/Rule and 243.2 Byte/Rule833

in PSTSS, PartitionSort and CutSplit respectively. We can834

also find that, the memory consumption of CutTSS increases835

almost linearly with the rule set size, which makes it well836

suitable for larger classifiers.837

C. Evaluation on Classification838

1) Average Classification Time: Figure 14 shows the aver-839

age classification time and throughput of CutTSS as well840

as PSTSS, PartitionSort and CutSplit. In order to compare841

the performance of these algorithms, we first compute the842

average times for three different types of rules respectively,843

and then compute the ratio based on these average times. From844

Figure 14(a), (b) and (c), we can see that CutTSS requires845

less time to classify packets, with an average of 0.257 us,846

0.318 us and 0.135 us for each type of rule set respectively,847

while PSTSS consumes an average of 1.765 us, 1.164 us848

and 1.506 us respectively. Thus, CutTSS achieves an average849

of 6.868 times, 3.661 times and 11.156 times speed-up on850

classification performance than PSTSS respectively, almost851

an order-of-magnitude improvement on classification time852

on average. Additionally, the experimental results show that853

Fig. 14. Classification performance.

CutTSS achieves 1.43 times and 1.89 times speed-up than 854

CutSplit and PartitionSort respectively. It should be noted 855

that, although there are much more subsets in PartitionSort, 856

it can still achieve comparable performance to CutTSS. The 857

reason is that, almost all the rules are concentrated in the first 858

few subsets when ordered by maximum priority, so that most 859

lookups in PartitionSort can terminate as soon as a rule is 860

matched in the first few subsets. 861

2) Average Throughput: From Figure 14(d), (e) and (f), 862

we can see that CutTSS achieves an average throughput 863

of 6.013 Mpps (Million packets per second), 6.782 Mpps 864

and 9.235 Mpps for each type of rule set respectively, while 865

PSTSS achieves an average of 0.994 Mpps, 1.016 Mpps and 866

1.396 Mpps respectively. Thus, CutTSS achieves an average 867

of 6.049 times, 6.675 times and 6.615 times improvement on 868

throughput than PSTSS respectively. Compared to CutSplit 869

and PartitionSort, CutTSS also achieves 1.304 times and 870

1.878 times improvement respectively across all of the rule 871

sets. We can also see an interesting phenomenon in Figure 14 872

that the proposed CutTSS has much higher performance for 873

a few rule sets, such as the second rule set and the seventh 874

rule set in Figure 14(e). Actually, this phenomenon is caused 875

by the characteristic of the seed parameter file in ClassBench. 876

In Figure 14(e), the second, the seventh and the twelfth rule 877

sets are generated based on the same seed parameter file, but 878
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Fig. 15. Average memory access.

Fig. 16. Update performance.

with different sizes. By checking the type of terminal nodes879

after pre-cuttings, we find that the ratio of non-leaf terminal880

node in these three rule sets is much less than that in other rule881

sets, meaning that the rules generated based on this specific882

seed file are more evenly distributed than others. Thus, most883

of the rules in these rule sets can be separated into leaf nodes884

and be searched with linear search as traditional decision trees.885

However, this phenomenon does not exist for the twelfth rule886

set in Figure 14(e), the reason is that, when the rule set887

contains more and more rules, there will be more and more888

tuples needed to be searched in big subset, which may become889

the performance hurdle of CutTSS.890

3) Average Memory Access: Figure 15 shows the average 891

memory access of CutTSS as well as PSTSS, PartitionSort and 892

CutSplit. Note that we think traversing a tree node, a rule or a 893

tuple as one memory access in our experiments. It is obvious 894

that CutTSS is significantly better than other three algorithms. 895

Compared to PSTSS, experimental results show that CutTSS 896

achieves an average of 3.8 times reduction on the number 897

of memory accesses. Compared to PartitionSort and CutSplit, 898

CutTSS also achieves 2.3 times and 1.2 times improvement 899

on average. 900

D. Evaluation on Incremental Update 901

Since CutSplit can not support fast incremental updates, 902

we just evaluate update performance among CutTSS, PSTSS 903

and PartitionSort. Figure 16 shows the average incremental 904

update time and throughput of CutTSS as well as PSTSS 905

and PartitionSort. From Figure 16(a), (b) and (c), we can see 906

that CutTSS requires less time to update rules, achieving an 907

average of 0.464 us, 0.246 us and 0.273 us for each type 908

of rule set respectively, while PSTSS consumes an average 909

of 0.314 us, 0.261 us and 0.301 us respectively. Additionally, 910

our experimental results also show that, CutTSS achieves an 911

average of 2.516 times speed-up on update time than Partition- 912

Sort across all of the rule sets. From Figure 16(d), (e) and (f), 913

we can see that both CutTSS and PSTSS can achieve high 914

throughput for updates, achieving at an average of 3.734 Mpps 915

and 3.583 Mpps respectively. Thus, CutTSS has comparable 916

update performance to PSTSS, which is used in Open vSwitch. 917

V. CONCLUSION 918

Open vSwitch implements a variant of TSS instead of 919

decision tree-based algorithms despite their better performance 920

on lookups, because the latter have poor support for fast 921

incremental updating of rules, which is an important metric 922

for SDN switches. However, TSS-based schemes can achieve 923

fast updates but have a performance concern. 924

To achieve fast lookup and update at the same time, we pro- 925

pose CutTSS, a two-stage framework consisting of heteroge- 926

neous algorithms to adaptively exploit different characteristics 927

of the rule sets at different scales. In the first stage, partial 928

trees are constructed from rule subsets grouped with respect to 929

their small fields. This grouping eliminates rule overlap at large 930



IEE
E P

ro
of

14 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

scales, thereby enabling very efficient pre-cuttings without any931

rule replications. The second stage handles packet classifica-932

tion at small scales, where PSTSS is applied for these subsets933

to facilitate tree constructions. Overall, CutTSS exploits the934

strengths of both decision tree and TSS to circumvent their935

respective weaknesses. Experimental results show that CutTSS936

has comparable update performance to TSS in Open vSwitch,937

while achieving almost an order-of-magnitude improvement938

on classification performance over TSS.939
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Tuple Space Assisted Packet Classification With
High Performance on Both Search and Update

Wenjun Li , Member, IEEE, Tong Yang , Ori Rottenstreich, Xianfeng Li, Gaogang Xie,

Hui Li, Balajee Vamanan , Dagang Li, and Huiping Lin

Abstract— Software switches are being deployed in SDN to1

enable a wide spectrum of non-traditional applications. The pop-2

ular Open vSwitch uses a variant of Tuple Space Search (TSS) for3

packet classifications. Although it has good performance on rule4

updates, it is less efficient than decision trees on lookups. In this5

paper, we propose a two-stage framework consisting of hetero-6

geneous algorithms to adaptively exploit different characteristics7

of the rule sets at different scales. In the first stage, partial8

decision trees are constructed from several rule subsets grouped9

with respect to their small fields. This grouping eliminates rule10

replications at large scales, thereby enabling very efficient pre-11

cuttings. The second stage handles packet classification at small12

scales for non-leaf terminal nodes, where rule replications within13

each subspace may lead to inefficient cuttings. A salient fact is14

that small space means long address prefixes or less nesting levels15

of ranges, both indicating a very limited tuple space. To exploit16

this favorable property, we employ a TSS-based algorithm for17

these subsets following tree constructions. Experimental results18

show that our work has comparable update performance to TSS19

in Open vSwitch, while achieving almost an order-of-magnitude20

improvement on classification performance over TSS.21
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Index Terms— Packet classification, SDN, openflow, open 22

vswitch, virtualization. 23

I. INTRODUCTION 24

SOFTWARE virtual switches are becoming an important 25

part of virtualized network infrastructures. Backed by 26

SDN, virtual switches enable many non-traditional network 27

functionalities like flexible resource partitioning and real-time 28

migration. Despite their advantages on flexibility and low-cost, 29

software switches have a performance concern. The prominent 30

Open vSwitch enforces forwarding policies with OpenFlow [2] 31

table lookups, which is essentially a multi-field packet clas- 32

sification problem [3], [4]. As an extensively studied bottle- 33

neck, packet classification in physical switches still relies on 34

expensive TCAMs because algorithmic solutions implemented 35

in software can hardly satisfy wire-speed forwarding in tra- 36

ditional network infrastructures [5]–[14]. With the advent of 37

SDN and NFV, efficient algorithmic solutions using commod- 38

ity memories such as DRAM/SRAM are becoming attractive 39

again. 40

The first step towards meeting this revitalized demand is 41

an understanding of the past research. Among existing algo- 42

rithmic packet classification research, decision tree [15]–[25] 43

and Tuple Space Search (TSS) [26]–[28] are two major 44

approaches. In decision tree-based schemes, the geometric 45

view of the packet classification problem is taken and a 46

decision tree is built. They work by recursively partitioning 47

the searching space into smaller subspaces until less than a 48

predefined number of rules are contained by each subspace. 49

In case a rule spans multiple subspaces, the problem of 50

rule replication happens and a rule copy is needed for each 51

overlapped subspace. This rule replication problem becomes 52

especially serious during the cutting operations at small scales, 53

where small rules across narrow spaces are to be separated 54

from their overlapped large rules. Thus, decision tree-based 55

schemes achieve fast lookup speed on packet classification, 56

but cannot support fast updates due to the notorious rule 57

replication problem. 58

Unlike traditional packet classification, OpenFlow has a 59

much higher demand for updates, which further exacerbates 60

the problem and makes decision tree algorithms inapplicable 61

in this context [28], [29]. In contrast, TSS partitions rules 62

into a set of hash tables (i.e., tuple space) with respect 63

to their prefix length. Thus, rule replication never happens 64

in TSS-based schemes, thereby enabling an average of one 65

0733-8716 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 1. The initial framework of CutTSS.

memory access for each rule update. As a result, the popular66

Open vSwitch implements a variant of TSS for its flow table67

lookups [28]. The primary reason is its good support for68

fast incremental rule updates, which is an important metric69

for SDN switches. Despite their advantages on fast updates,70

TSS-based schemes have a performance concern. For each71

incoming packet, TSS requires searching on every tuple,72

because the final matching is the one with the highest priority73

of matched rules from all tuples. This problem is especially74

serious for working on large space due to serious tuple75

expansion problem.76

To achieve fast lookup and update at the same time,77

we propose CutTSS as shown in Figure 1, which fosters the78

strengths and circumvents the weaknesses of decision tree and79

TSS-based schemes. To the best of our knowledge, this is80

the first solution that can keep the advantages of these two81

schemes: fast lookup and fast update. First, we adopt cutting82

techniques to build decision trees at large scales, so that each83

packet can shrink its searching space in a few steps for fast84

lookups. Second, to improve the update performance, we intro-85

duce TSS-based schemes to assist decision tree construction86

at small scales. Overall, CutTSS exploits the strengths of87

both decision tree and TSS to circumvent their respective88

weaknesses.89

To refine the framework of CutTSS, a two-stage framework90

consisting of heterogeneous algorithms is proposed. During the91

first stage, partial decision trees are constructed from several92

subsets grouped in their respective small fields (i.e., long prefix93

or narrow range), and leave some non-leaf terminal nodes94

(i.e., terminal nodes after pre-cuttings which contain rules95

more than the predefined number of rules for leaf nodes,96

as illustrated in Figure 6) for more efficient handling by97

TSS-based schemes. This grouping eliminates rule overlapping98

at large scales, thereby enabling very efficient pre-cuttings99

without any rule replications. The second stage handles packet100

classification at small scales for rules in non-leaf terminal101

nodes, where overlapping of rules within each subspace may102

become common that will lead to inefficient cuttings due103

to rule replications. Fortunately, a small space means long104

address prefixes or less nesting levels of ranges, both indi-105

cating a very limited tuple space. Based on this property,106

we employ a TSS-based algorithm called PSTSS [28] for107

rules in these subsets to facilitate tree constructions. Therefore,108

by exploiting the benefits of decision tree and TSS techniques109

adaptively, CutTSS not only offers fast updates and linear110

memory, but also pushes the performance of algorithmic111

packet classification on par to hardware-based solutions. The 112

main contributions of this paper include the following aspects: 113

• A scalable rule set partitioning algorithm based on the 114

observation that most rules have at least one small field 115

spanning across a narrow space, so the rule set can be 116

efficiently partitioned into a few non-overlapping subsets. 117

• A set of novel cutting algorithms that exploit the global 118

characteristics of the partitioned subset of rules, so that 119

the rules can be partitioned into smaller subsets without 120

rule replications. 121

• A two-stage framework combining decision tree and 122

TSS techniques, which can adaptively exploit different 123

characteristics of the rule sets at different scales. 124

We evaluate our algorithm using ClassBench [30], and the 125

results show that CutTSS is able to produce a very small 126

number of shorter trees with linear memory consumption even 127

for rule sets up to 100k entries. Compared to the TSS algo- 128

rithm in Open vSwitch, CutTSS achieves similar update per- 129

formance, but outperforms TSS significantly on classification 130

performance, achieving almost an order of magnitude improve- 131

ment on average. Our implementation of CutTSS is publicly 132

available on our website (http://www.wenjunli.com/CutTSS). 133

The rest of the paper is organized as follows. In Section II, 134

we first briefly summarize the related work. After that, 135

we make a set of observations and present the technical details 136

of CutTSS in Section III. Section IV provides experimental 137

results. Finally, conclusions are drawn in Section V. 138

II. BACKGROUND AND RELATED WORK 139

In this section, we first review the background and some 140

research efforts about the packet classification problem. After 141

that, we briefly describe two major threads of algorithmic 142

approaches: decision tree-based and tuple space-based packet 143

classification. Finally, we give some summaries. 144

A. The Packet Classification Problem 145

The purpose of packet classification is to enable differ- 146

entiated packet treatment according to a predefined packet 147

classifier. A packet classifier is a set of rules, with each 148

rule R consisting of a tuple of F field values (exact value, 149

prefix or range) and an action (e.g., drop or permit) to be 150

taken in case of a match. The rules in the classifier are 151

often prioritized to resolve potential multiple match scenarios. 152

Packet classification has been well studied for two decades, 153

but most of them focused on high-speed lookups, with very 154

little consideration on the performance of rule updates. How- 155

ever, unlike traditional packet classification, OpenFlow has a 156

much higher demand for updates, making most of traditional 157

algorithms inapplicable in the context of SDN. An example 158

OpenFlow classifier is shown in Table I. 159

Packet classification is a hard problem with high complexity. 160

From a geometric point of view, packet classification can be 161

treated as a point location problem, which has been proved that 162

the best bounds for locating a point are either Θ(log N) time 163

with Θ(NF ) space, or Θ((logN)F−1) time with Θ(N) space 164

for N non-overlapping hyper-rectangles in F-dimensional 165

space [31]. Therefore, the worst-case mathematical complexity 166
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TABLE I

AN EXAMPLE OPENFLOW 1.0 CLASSIFIER

TABLE II

AN EXAMPLE OF 2-TUPLE CLASSIFIER

of algorithmic packet classification is extremely high, which167

makes it impractical to achieve a wire-speed requirement168

within the capabilities of current memory technology. But169

fortunately, packet classification rules in real-life applications170

have some inherent characteristics that can be exploited to171

reduce the complexity. These inherent characteristics provide172

a good substrate for the exploration of practical algorithmic173

solutions [1], [15]–[18], [20], [21], [23], [26], [32]–[40].174

Among them, decision tree and Tuple Space Search (TSS)175

are two major approaches. Next, we briefly summarize the176

related work on these two techniques. For the convenience of177

description, we use a small example of 2-tuple rule set shown178

in Table II for subsequent discussions. Figure 2(a) shows the179

geometric representation of the example rules given in Table II.180

B. Decision Tree-Based Packet Classification181

In decision tree-based schemes, the geometric view of the182

packet classification problem is taken and a decision tree183

is built. The root node covers the whole searching space184

containing all rules. They work by recursively partitioning185

the searching space into smaller subspaces until less than a186

predefined number of rules are contained by each subspace.187

In case a rule spans multiple subspaces, the undesirable rule188

replication happens (e.g., R3, R4 and R6 in Figure 2(b)).189

When a packet arrives, the decision tree is traversed to find a190

matching rule at a leaf node. According to the partitioning191

method on searching space, current decision trees can be192

categorized into two major approaches: equal-sized cutting and193

equal-densed cutting (i.e., splitting).194

1) Classical Decision Tree Schemes: Cutting based195

schemes, such as HiCuts [15] and HyperCuts [16], separate196

the searching space into many equal-sized subspaces using197

local optimizations. HiCuts cuts the searching space into many198

equal-sized subspaces recursively until the rules covered by199

each subspace is less than the pre-defined bucket size called200

binth. To reduce memory consumption, HiCuts uses some201

heuristics to select the cutting dimension and decides how202

many subspaces should be cut using a space optimization203

function. Figure 2(b) shows the decision tree generated by204

Fig. 2. Review on related decision trees (binth = 4).

HiCuts, where the Field X is cut into four equal-sized sub- 205

spaces (i.e., [0,3], [4,7], [8,11], [12,15]), and is further cut 206

into two equal-sized subspaces (i.e., [12,13], [14,15]) to finish 207

the decision tree construction. HyperCuts can be considered 208

as an improved version of HiCuts, which is more flexible in 209

that it allows cutting on multiple fields per step, resulting in a 210

fatter and shorter decision tree. Besides, several optimization 211

techniques are adopted in HyperCuts, such as node merging, 212

rule overlap, region compaction and pushing common rule 213

subsets upwards. But both HiCuts and HyperCuts have the 214

same rule replication problem for rules spanning multiple 215

subspaces, especially for large rule tables. Figure 2(c) shows 216

the decision tree generated by HyperCuts. 217

In order to reduce the rule replications suffered from 218

equal-sized cuttings, schemes based on splitting divide the 219

searching space into unequal-sized subspaces containing a 220

nearly equal number of rules. HyperSplit [17], a well-known 221

splitting-based decision tree scheme, splits the searching space 222

into two unequal-sized subspaces containing a nearly equal 223

number of rules. Due to its simple binary separation in 224

subspaces, the worst-case search performance of HyperSplit 225

is explicit. However, even with the optimized binary space 226

splitting, the memory consumption of HyperSplit still grows 227

exponentially as the number of rules increases. Figure 2(d) 228

shows the decision tree generated by HyperSplit, we can see 229

that in each internal tree node, HyperSplit splits the selected 230

field into two unequal-sized subspaces, with each subspace 231

covering rules as balanced as possible. 232

2) Recent Decision Tree Schemes: EffiCuts [18], a well- 233

known cutting based scheme, observed that real-life rules 234
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exhibit several inherent characteristics, and a good rule set235

partitioning can reduce rule replications dramatically. Thus,236

instead of building a single decision tree for all rules, EffiCuts237

separates rules into several subsets with each subset creating its238

own decision tree independently using a variant of HyperCuts.239

With all F fields considered, up to 2F decision trees can be240

generated for F-tuple classifiers, resulting in a lot of overall241

memory accesses. In contrast, HybridCuts [20] separates rules242

based on a single field rather than all F fields in EffiCuts, thus,243

HybridCuts achieves a significant reduction in the number of244

subsets (i.e., from 2F to F+1), which in turn reduces the245

overall memory accesses. However, due to the employment of246

HyperCuts, the worst-case search performance of HybridCuts247

is unbounded. Worse still, with the increase of the number248

of rule fields and the size of classifiers, the performance of249

HybridCuts drop dramatically due to the deteriorating rule250

replications. Instead of using the most significant bits for cuts,251

ByteCuts [23] introduces a new cutting scheme that uses any252

range of bits to build decision trees. However, ByteCuts can253

achieve high-speed construction of trees but not fast updates254

of rules.255

In order to reduce rule replications suffered from splitting,256

ParaSplit [19] proposes a rule set partitioning algorithm to257

reduce rule set complexity, which significantly reduces the258

overall memory consumption in HyperSplit. However, ParaS-259

plit employs a complex heuristic for rule set partitioning,260

which may require tens of thousands of iterations to reach261

an optimal partitioning. To achieve better scalability for dif-262

ferent rule sets, SmartSplit [21] separates rules into at most263

four subsets to build balanced trees dynamically, achieving264

high-speed classification by leveraging the logarithmic search265

time of balanced search trees. By partitioning rules into several266

sortable subsets and building a MITree for each subset, Parti-267

tionSort [22] achieves logarithmic classification and update268

time for each subset simultaneously. Due to the stringent269

constraints on partitioning, PartitionSort requires much more270

trees than SmartSplit, resulting in slower classification. Instead271

of using a single cutting or splitting technique to build trees,272

CutSplit [1], the preliminary version of the proposed CutTSS,273

introduces a practical framework that can exploit the benefits274

of cutting and splitting techniques adaptively. However, due to275

the boring rule replications in its post-splitting stage, CutSplit276

can only achieve incremental updates by rebuilding sub-trees,277

consuming up to a few milliseconds in some cases, far more278

behind the wire-speed requirement of incremental updates.279

C. Tuple Space-Based Packet Classification280

In tuple space-based schemes, rules are partitioned into a281

set of hash tables (i.e., tuple space) based on easily computed282

rule characteristics. Thus, rules can be inserted and deleted283

from hash tables in amortized one memory access, resulting284

in faster updates. When a packet arrives, these partitioned hash285

tables are individually searched to find the best matching.286

1) Classical Tuple Space Schemes: Tuple Space Search287

(TSS) [26], the basic tuple space-based packet classification,288

decomposes a classification query into a set of exact match289

queries in hash tables. TSS partitions rules into different hash290

TABLE III

TSS BUILDS 4 TUPLES FOR RULES GIVEN IN TABLE II

tables based on a set of pre-computed tuples. Each tuple 291

can be defined by concatenating the actual bits used in each 292

field in order, so that a hash key can be created to map the 293

rules of that tuple into its corresponding hash table. During 294

classification or updates, those same bits are extracted from 295

the packet or rule as a hash key for searches. For example, 296

rules R1 and R2 shown in Table II should be placed in the 297

same tuple space, because both of them use three and zero of 298

the bits in their respective two fields. Thus, TSS builds four 299

tuple spaces as shown in Table III for rules given in Table II. 300

As an improvement, the Pruned Tuple Space Search (PTSS) 301

algorithm [26] reduces the scope of the exhaustive search by 302

performing a search on individual rule fields to find a subset 303

of candidate tuple spaces. However, both TSS and PTSS have 304

low classification speed, because the number of tuple space is 305

large and each tuple space must be searched for every packet. 306

This problem becomes more serious for classifiers with an 307

increased number of fields such as OpenFlow classifiers. 308

2) Recent Tuple Space Schemes: TupleMerge [27], 309

a recently proposed tuple space scheme, improves upon TSS 310

by relaxing the restrictions on which rules may be placed in the 311

same tuple space. By merging tuple spaces that contain rules 312

with similar characteristics together, TupleMerge can reduce 313

the number of candidate tuple spaces and thus the overall 314

classification time. However, with more tuple spaces merged, 315

its performance may be affected due to hash collisions. Priority 316

Sorting Tuple Space Search (PSTSS) [28], which is used in 317

Open vSwitch, improves the performance of TSS by sorting 318

tuple spaces based on a pre-computed priority of each tuple 319

space (i.e., Tuple Priority column in Table III). By searching 320

tuple spaces in the descending order of priority, the search 321

can terminate as soon as a match is found because it has the 322

highest priority among all possible matched rules. Although 323

PSTSS can improve average performance compared to TSS, 324

its worst-case performance is still the same as TSS. 325

D. Summary of Prior Art 326

Clearly, decision tree-based packet classification has been 327

actively investigated for two decades. But as far as we know, 328

none of them can make an excellent trade-off among all key 329

metrics. In particular, most of them can achieve high-speed 330

packet classification but not fast updates, which seriously 331

limit their scalability in the era of SDN. In contrast, tuple 332

space-based schemes have been the de-facto choice in soft- 333

ware switches, because they support fast updates with only 334

linear memory consumption. However, these schemes still 335

suffer from low classification performance especially for large 336
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classifiers, falling short of the needs of high-speed require-337

ments in fast-growing networks.338

III. CUTTSS: ENJOYING BOTH WORLDS OF EFFICIENT339

CLASSICATION AND RULE UPDATE340

In this section, we first introduce ideas behind the design of341

CutTSS. Then, we propose a scalable partitioning algorithm342

based on experimental observations, which can eliminate rule343

overlapping at large scales. To exploit these characteristics of344

partitioned subsets, a set of novel cuttings are designed to build345

partial trees without any rule replications in the first stage.346

After that, a two-stage framework consisting of heterogeneous347

algorithms is proposed to build decision trees for partitioned348

subsets. Finally, we give more insights on the effectiveness of349

CutTSS from both theoretical and experimental aspects.350

A. Ideas & Framework351

According to the above review and analyses given in352

CutSplit [1], we know that cutting techniques can separate353

searching space into smaller subspaces quickly for faster354

classification, but it suffers from serious rule replications.355

In contrast, TSS can completely avoid rule replications and356

support fast incremental updates, but it has longer classifica-357

tion time due to tuple expansions, especially for rule sets at358

large scales. Therefore, to foster the strengths and circumvent359

the weaknesses of decision tree and TSS schemes, the idea360

directly perceived is to combine the following two strategies:361

• Pre-Cutting at large scales: Cutting-based partitioning362

on the searching space at large scales, which can reach363

any subspaces at small scales with very few steps.364

• Post-TSS at small scales: TSS-based searching on sub-365

spaces at small scales, which can avoid inefficient cutting366

of decision trees.367

Figure 1 shows the initial framework of the following368

CutTSS. However, in order to design scalable algorithms to369

meet the above design goals, an effective combination of these370

two ideas still faces several difficulties and challenges:371

• Low memory access: Although partitioning can reduce372

rule overlapping significantly, it will increase the overall373

memory accesses. Thus, how to generate rule subsets as374

few as possible?375

• Low memory consumption: Since cutting on rules376

overlapped at different scales will lead to serious rule377

replications, how to avoid rule replications during the first378

cutting stage?379

• Low update time: Since many rules are overlapped and380

concentrated in some subspaces at small scales, which381

will lead to inefficient cuttings due to rule replications.382

How to avoid rule replications in these subspaces at small383

scales?384

The answers to these questions are the key ideas in this385

paper. Our solution can be summarized in the following three386

steps:387

• Step 1: Partitioning based on very few small fields: In388

order to eliminate rule overlapping at large scales and389

reduce the number of partitioned subsets, we separate390

Fig. 3. The refined framework of CutTSS.

rules into subsets based on their characteristics shared 391

in very few small fields. 392

• Step 2: Pre-cuttings by exploiting the global charac- 393

teristics of the partitioned subsets: After partitioning 394

the rule set, we get a set of favorable fields for each 395

partitioned subset, where a set of simpler cutting algo- 396

rithms without prior optimizations can be applied for 397

space partitioning. 398

• Step 3: TSS-assisted cutting trees for fast updates: 399

Thanks to the clever partitioning and pre-cuttings without 400

any rule replications, most of the rules can be separated 401

into leaf nodes for the linear search, except for a small 402

fraction of concentrated rules at small scales. For these 403

non-leaf terminal nodes, we employ a TSS-based algo- 404

rithm to facilitate the rest of tree constructions. 405

Based on these ideas, we give the refined framework of 406

the proposed CutTSS shown in Figure 3. Overall, a complete 407

packet classification framework with two heterogeneous stages 408

exploiting favorable properties in their respective space scales 409

is in place. Next, we give more details about CutTSS from 410

the following three aspects: rule set partitioning, decision tree 411

construction and decision tree operation. 412

B. Rule Set Partitioning Based on Small Fields 413

Classification rules in real-life applications have structural 414

redundancies and several inherent characteristics that can be 415

exploited to reduce the complexity. Thus, we use the publicly 416

available ClassBench and OpenFlow-like rule tables for study 417

to make observations on common characteristics of rule sets. 418

It should be noted that the two OpenFlow-like rule tables 419

are supported by the authors of ParaSplit [19], which were 420

generated based on 216 real-life rules from enterprise cus- 421

tomers. We first give a few definitions, then we present the 422

key observations related to the following discussions on rule 423

set partitioning. 424

1) Definitions: Given an N-field rule R = (F1, …Fi, …, 425

FN ) and a threshold value vector T = (T1, …Ti, …, TN ), 426

where i ∈ {1, 2, …, N}, we first give some definitions for 427

field Fi as follows: 428

• Fi is a big field: the range length of field Fi > Ti; 429

• Fi is a small field: the range length of field Fi ≤ Ti. 430

Based on the above definitions for field Fi, we further give 431

some definitions for R as follows: 432
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Fig. 4. The ratio of big rules for seed-ipc rule set.

TABLE IV

STATISTICAL RESULTS FOR 5-TUPLE & OPENFLOW-LIKE RULES

• R is a big rule: ∀i ∈ {1, 2, …, N}, Fi is a big field;433

• R is a k-small rule: R contains at least k small fields.434

For a classical 5-tuple rule, since the protocol field is435

restricted to a small set of values (e.g., tcp, udp), we just436

consider the other four fields in this paper. Then the thresh-437

old value vector T for 5-tuple rules is simplified to a438

four-dimensional vector T = (TSA, TDA, TSP , TDP ). For the439

sake of convenience in writing, we use a logarithmic vector440

T’ to represent the threshold value vector T equivalently. For441

example, if we set threshold value vector T = (216, 216,442

28, 28), then index logarithmic T’ = (16, 16, 8, 8).443

2) Observations: Based on the above definitions, we make444

some statistical experiments for several rule sets from Class-445

Bench. There are three types of rule sets: ACL (Access446

Control List), FW (Firewall) and IPC (IP Chains). Figure 4447

shows the ratio of big rules under different thresholds for448

seed IPC rule set. Due to length limitation, more results for449

ACL and FW rule sets are publicly available on our website450

(http://www.wenjunli.com/CutTSS). It is clear that the ratio of451

big rules is very low even under very demanding thresholds.452

For example, assume T’ = (16, 16, 8, 8), the ratio of big453

rules for three types of rule set are all less than 0.01, that is454

to say, less than 1% rules are big rules under T = (216, 216,455

28, 28). This indicates that the vast majority of the rules have456

at least one small field satisfying a threshold T. Essentially,457

this observation is consistent with previous observations. Oth-458

erwise, a large number of big rules may cause serious space459

overlapping which is contrary to previous observations that the460

number of rules or address prefixes matching a given packet461

is typically five or less.462

Table IV shows statistical results for 5-tuple rule sets and463

OpenFlow-like rule tables. Clearly, this observation is still464

effective for OpenFlow-like rule tables: the vast majority of 465

rules have at least one small field. 466

3) Rule Set Partitioning: Based on the above observations, 467

we propose a partitioning algorithm to separate rules into sev- 468

eral subsets. The purpose of our partitioning is to obtain a few 469

subsets without duplicates among each other. For each subset, 470

all contained rules should share a common characteristic for 471

a set of rule fields: small field. Next, we introduce a simple 472

heuristic as follows: 473

–Step1: Removal of big rules. Since the number of big rules 474

is negligible, we can simply apply PSTSS for these rules. 475

–Step2: Selection of partitioning rules. We first count the 476

distinct values for each field, then select a few fields with a 477

large number of distinct values. The selection makes sure that 478

for the vast majority of rules, there is at least one selected field 479

with a small value. The rest rules without any small value in 480

the selected fields will be treated as big rules. 481

–Step3: Fields-wise partitioning. Assume that M fields have 482

been selected for F-tuple rule sets. We categorize rules based 483

on field length (i.e., big or small) in all selected fields, leading 484

to at most 2M -1 subsets. This partitioning is different from 485

EffiCuts from two perspectives: fewer fields and more flexible 486

definition of small/big field, which enables much more flexible 487

partitioning to generate fewer subsets. 488

–Step4: Selective subset merging. For subsets containing 489

very few rules, we can merge these rules into other subsets 490

that have fewer small fields. Due to the consideration of its 491

relevance and space limitation, we do not elaborate on this 492

algorithm in this paper. Note that our merging will not lead to 493

rule replication in our decision trees, which is quite different 494

from EffiCuts. 495

Take rules in Table I as an example, we first move R5 into 496

a big rule subset, then we calculate the number of distinct 497

small fields in each field and pick ip_src & ip_dst as the two 498

most distinct fields. Thus, we can partition the rule set into four 499

subsets: big_subset = {R5}, (smallip_src, smallip_dst) = {R1}, 500

(bigip_src, smallip_dst) = {R3} and (smallip_src, bigip_dst) = 501

{R2, R4}. Finally, we can merge (smallip_src, smallip_dst) 502

with (bigip_src, smallip_dst) for a new subset (arbitraryip_src, 503

smallip_dst) = {R1, R3}, where arbitrary field contains both 504

small and big field. Thus, three subsets are generated for the 505

sample rule set: big_subset = {R5}, (smallip_src, bigip_dst) = 506

{R2, R4} and (arbitraryip_src, smallip_dst) = {R1, R3}. 507

C. Decision Tree Construction: Pre-Cutting & Post-TSS 508

From Figure 3, we can see that a TSS-assisted tree will be 509

built for each partitioned subset (except for the big subset). 510

Thus, we will give more details about the tree building algo- 511

rithm in CutTSS. For the convenience of description, we will 512

use the rule set shown in Table V as a working example, where 513

no big rules are included. Based on the above definitions of 514

rule field, we can label each rule with a field vector as shown 515

in Table V. Based on these field labels, the fourteen rules can 516

be partitioned into three subsets as shown in Figure 5. For each 517

subset, we then build the decision tree through the following 518

two steps: pre-cutting and post-TSS. 519

1) Pre-Cutting: Fixed Cuttings on Small Fields: The ratio- 520

nale behind the above strategy of rule set partitioning is simple: 521
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TABLE V

A NEW EXAMPLE OF 2-TUPLE CLASSIFIER (TX = 4, TY = 4)

Fig. 5. Ruleset partitioning example (TX = 4, TY = 4).

by grouping rules that are narrow in the same fields, rules522

that are large in these fields are excluded, and intensive rule523

replications caused by these excluded rules are eliminated,524

thereby enabling very efficient cuttings. What is more, this525

grouping can completely eliminate rule replications at large526

scales (i.e., larger than small field’s threshold) for prefix fields,527

because each prefix can never be overlapped with two shorter528

prefixes with the same prefix length. To exploit these favorable529

characteristics of partitioned subsets, we introduce a simple530

but effective cutting algorithm called Fixed Cuttings (FiCuts),531

which will be applied in the first stage partial tree construction.532

FiCuts derives from HiCuts and HyperCuts, but with a533

better global view on the characteristics of the rule set.534

As shown in Figure 5(b), the rules in the subset are all small535

in Field X. This facilitates cuts along the Field X without536

any rule replications at large scales. Since the rules have been537

grouped into several subsets, with each subset sharing the538

same small fields, FiCuts can utilize this information to exploit 539

efficient cuttings. Compared to HiCuts and HyperCuts, FiCuts 540

has several differences in cutting details as follows: (1) Instead 541

of changing cutting dimensions dynamically, FiCuts conducts 542

cuttings on the subset along a set of fixed dimensions, where 543

the rules are small in these fields; (2) Instead of deciding 544

how many subspaces should be cut per step dynamically, 545

the number of cuts per step in CutTSS is a fixed value 546

(i.e., MAXCUTS, defined to control the number of empty tree 547

node); (3) None of the prior optimization methods is required 548

in FiCuts, making it simple enough to achieve fast lookups and 549

updates; (4) As FiCuts is only designed for the construction 550

of partial trees in the first stage, its cutting processes will 551

stop not only in the leaf nodes containing rules less than the 552

pre-defined binth, but also in the nodes located at small scales 553

(i.e., cutting space smaller than the threshold of small field). 554

Thus, for the subsets containing one or more small fields, 555

FiCuts will cut on that single or multiple small fields to build 556

partial trees as illustrated in Figure 6. We can see from the 557

partial trees that rule replication can be completely avoided 558

and all rules are located in the bottom nodes of the tree 559

(i.e., leaf nodes or non-leaf terminal nodes). Besides, as none 560

of the prior optimization methods is adopted in equal-sized 561

cutting processes, each node in the partial trees can be easily 562

indexed by a string of bits, which can be used as an array 563

key during lookups and updates. For each subset, FiCuts 564

continues its cutting processes until the number of rules is 565

less than the threshold for linear search or the cutting space 566

is smaller than the threshold of small field. Take the subsets 567

shown in Figure 6 as an example, FiCuts just works fine 568

for the second subset: it builds the whole tree as illustrated 569

in Figure 6(e), in which all rules are partitioned into leaf 570

nodes. However, Figure 6(d) shows a different scenario, where 571

pure FiCuts does not solve the problem completely, and only 572

a partial tree can be constructed. When FiCuts reaches the 573

rightmost cutting subspace in Figure 6(a), it is no longer 574

effective by continuing cutting along Field X, because the 575

cutting space in Field X is now smaller than TX . Therefore, 576

it is necessary to resort to other more effective methods to 577

continue tree constructions at small scales. 578

2) Post-TSS: Tuple Space Assisted Cutting Trees: After the 579

first stage of pre-cuttings, two types of terminal nodes will be 580

generated in the built partial trees: leaf node (i.e., #rules ≤ 581

binth) and non-leaf terminal node (i.e., #rules > binth). 582

As a very limited number of rules are contained in leaf 583

nodes, we can simply conduct a linear search on rules as in 584

traditional decision trees. Thus, the second stage is mainly 585

designed to handle packet classification on non-leaf terminal 586

node. It is not difficult to see that the searching space has 587

been separated into much smaller subspaces after pre-cuttings, 588

where each subspace contains much fewer rules compared with 589

the original rule set. On the other hand, a small space means 590

long address prefixes or less nesting levels of ranges, both 591

indicating a very limited tuple space. Based on this property, 592

we employ the PSTSS for rules in the non-leaf terminal nodes 593

to facilitate tree constructions. Thus, for the two partial trees 594

shown in Figure 6, we can build their complete trees without 595

any rule replications as illustrated in Figure 7. 596
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Fig. 6. The first stage partial trees built by FiCuts (MAXCUTS = 4, binth = 2).

Fig. 7. The complete TSS-assisted decision trees in CutTSS.

Up to now, three complete decision trees have been built597

for all rules given in Table V, as shown in Figure 6(e) and598

Figure 7. Overall, by exploiting the benefits of decision tree599

and TSS techniques adaptively, CutTSS can build TSS-assisted600

decision trees without any rule replications, thereby enabling601

fast updates and linear memory consumption.602

3) Refined Optimizations: To further improve the perfor-603

mance, several optimizations have been adopted in our imple-604

mentation as follows:605

–Optimization 1: Priority sorting on partitioned subsets. For 606

each incoming packet, CutTSS requires searching on every 607

partitioned subset, even if a rule has been matched in an 608

early subset. We improve on this by tracking the priority 609

of partitioned subsets as that in PSTSS and PartitionSort 610

algorithms, where the priority of each subset is the maximum 611

priority of all the rules in it. By searching from greatest to 612

least maximum priority on subsets, each lookup can terminate 613

as soon as a rule is matched in an early subset. 614

–Optimization 2: Dynamic thresholds on terminal leaf 615

nodes. For the terminal nodes after pre-cuttings, we adopt 616

a dynamic threshold to distinguish leaf nodes and non-leaf 617

nodes. The idea of this optimization is derived from the 618

performance comparison for a lookup between linear search 619

and TSS search. For example, the latest version of Open 620

vSwtich (http://www.openvswitch.org) implements the PSTSS 621

based on a variant of cuckoo hash [41], [42], where multiple 622

hash lookups are required for each TSS lookup in Open 623

vSwtich, which is much more complex and time-consuming 624

than a linear search. Assume that each TSS lookup takes N 625

times than a linear rule search, we can set the threshold as 626

N*M, where M is the number of tuples in the terminal node. 627

–Optimization 3: Greedy thresholds on small fields. Essen- 628

tially, small field is a relative concept of space scale. It is 629

not difficult to see that narrower small fields may enable more 630

effective pre-cuttings and less tuple spaces in non-leaf terminal 631

nodes. However, narrower small fields may also lead to more 632

rules in the big subset as illustrated in Figure 4, which may in 633

turn increase the number of tuples in the big subset. To make 634

a good trade-off, we select the thresholds on small fields by 635

running a greedy algorithm during partitioning. The strategy of 636
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Fig. 8. The framework of classification and update in CutTSS.

selecting thresholds in our implementation is simple: choose637

one that achieves the least average memory access.638

D. Decision Tree Operation: Classification & Update639

In this subsection, we complete the picture of CutTSS from640

the following aspects: packet classification and rule update.641

1) Packet Classification: For each incoming packet,642

CutTSS classifies the packet based on the framework shown643

in Figure 8(a). For each decision tree, CutTSS conducts644

classification in two steps: (1) Search the partial tree to find645

a terminal node; (2) Lookup for the best matching rule from646

the matched terminal node. Assuming that a 2-field incoming647

packet is Pi = <1000, 0010>, we next give a working example648

for the rule set shown in Table V, where three decision trees649

are built as shown in Figure 6(e) and Figure 7: (1) For the650

decision tree shown in Figure 6(e), Pi can traverse this tree651

based on its first two bits in Field Y (i.e., 00). Thus, the first652

child node is found, and no rule is matched in this subset;653

(2) For the decision tree shown in Figure 7(a), Pi can traverse654

this tree based on its first two bits in Field X (i.e., 10). Thus,655

the third child node is matched, and R3 is the best matching656

rule based on linear search; (3) For the decision tree shown657

in Figure 7(b), Pi can traverse this tree based on its first658

bit in Field Y&X (i.e., 0&1). Thus, the second child node is659

matched, and R13 is the best matching rule based on PSTSS660

search. Finally, R3 with a higher priority will be the best661

matching rule for Pi.662

2) Rule Update: For each updated rule, CutTSS updates663

the rule based on the framework shown in Figure 8(b).664

Unlike the above packet classification where all subsets have 665

to be searched, CutTSS can perform each rule update just 666

in a single subset, because the updated or inserted rule can 667

only appear in a specific subset in CutTSS, depending on 668

its field label vector. CutTSS performs rule updates in a tree 669

in two steps: (1) Search the partial tree to find a terminal 670

node; (2) Update (e.g., insert or delete) the rule pointed by 671

the matched terminal node. When searching the partial tree 672

for rule updates, the specific bits in each rule’s small fields 673

are used as a key for searching. Assuming that there are three 674

update operations as follows: (1) Delete rule R4 = <1001, 675

00**>; (2) Insert rule R15 = <1***, 010*>; (3) Insert rule 676

R16 = <110*, *>, we next give a working example for the 677

rule set shown in Table V. By calculating the field label of R4 678

(i.e., <small, small>), we known that R4 may only appear in 679

the decision tree shown in Figure 7(b), which is built for the 680

subset shown in Figure 5(d). Then, R4 can traverse this tree 681

based on its first bit in Field Y&X (i.e., 0&1). Thus, the second 682

child node is matched, and then R4 will be updated in this 683

terminal node. After removing R4 from the PSTSS classifier, 684

the number of rules in this node is reduced to the threshold of 685

binth. Thus, we can replace this non-leaf terminal node with 686

a new leaf node as shown in Figure 9(c). Similarly, we can 687

first calculate the field label of R15 (i.e., <big, small>) and 688

R16 (i.e., <small, big>), and then conduct updates as R4 in 689

the corresponding trees shown in Figure 6(e) and Figure 7(a), 690

as illustrated in Figure 9. 691

E. Rationale Behind Effectiveness 692

To reveal the rationale behind the effectiveness of CutTSS, 693

we next give more insights from both theoretical and experi- 694

mental aspects as follows. 695

1) Theoretical Analysis: Essentially, CutTSS is a two-stage 696

tree framework built from the following two stages: 697

(1) Coarse-grained pre-cutting with low memory consumption; 698

(2) Fine-grained post-TSS with high performance. For the 699

first-stage pre-cuttings in CutTSS, rule replications can be 700

avoided completely, thereby enabling linear memory consump- 701

tion for the partial trees. For the following tree constructions, 702

CutTSS adopts PSTSS with a linear memory consumption 703

to handle packet classification in non-leaf terminal nodes. 704

Thus, for a F-dimensional subset containing N distinct rules, 705

the memory consumption of CutTSS is Θ(N), which is the 706

best theoretical bound proved in previous work as described 707

in Section II(A). For each incoming packet or updated rule, 708

CutTSS performs packet classification or rule update in two 709

steps: (1) Search the partial tree based on the specific bits 710

in each packet or rule in Θ(1) time; (2) Perform classi- 711

fication or update in the matched terminal node containg- 712

ing M rules (M≤N). Based on the above Section II(A), 713

we can conclude that the worst-case time complexity of 714

CutTSS is Θ((logM)F−1). Thus, compared to the theoretical 715

worst-case time complexity (i.e., Θ((logN)F−1)), CutTSS 716

achieves Θ((logM N)F−1) times improvement. We then con- 717

sider the average worst-case time complexity of CutTSS 718

as follows: Assuming that all rules are evenly distributed, 719

the width and the threshold value of the small field are 720
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Fig. 9. The new decision trees after three rule updates.

Fig. 10. Rule distribution density at different sized small scales.

2W and 2T , we can conclude that the average worst-case721

time complexity of CutTSS is Θ((logMA)F−1), where MA =722

N*2(T−W ). Thus, from the perspective of theoretical analysis,723

the rational behind the effectiveness of CutTSS is essentially to724

perform the packet classification in a subspace at small scales725

that contains fewer rules. Although the theoretical bounds726

tell us that it is infeasible to design a single algorithm that727

can perform well in all cases, real-life classifiers have some728

inherent characteristics that can be exploited to reduce the729

complexity. Next, we give more insights from the aspect of730

experimental analysis.731

2) Experiential Analysis: We conduct experiential analysis732

based on the above three seed rule sets, to show more insights733

on the feature of rule distribution from two aspects: (1) Num-734

ber of non-leaf terminal nodes at small scales; (2) Average735

number of rules at small scales. Take the subset shown736

in Figure 5(d) as an example, we can say that six rules are737

concentrated at three (over 4*4 = 16) distinct subspaces at738

small scales and the average number of rules is two. Among739

the three subspaces, only one of them contains rules more than740

binth, which will be handled by PSTSS in the tree. Based on741

this example, we now give more details about experiential742

analysis. Figure 10(a), (b) and (c) shows the number of743

subspaces containing rules more than binth at different sized744

small scales. We can see that although rules are distributed in745

many subspaces, the vast majority of them contain a small746

number of rules. In other words, the number of non-leaf 747

terminal nodes in CutTSS is much smaller than the number 748

of leaf nodes in the trees, thereby making CutTSS more like a 749

traditional decision tree which can achieve high performance 750

on classification inherently. That’s why we call this tree as a 751

TSS-assisted tree in CutTSS. Figure 10 (d), (e) and (f) shows 752

the average number of rules over all subspaces that contain 753

rules. We can see that even under very loose thresholds, 754

the number of rules after the first stage pre-cutting is much 755

smaller than the original rule set size, thereby enabling high 756

performance on both search and update. 757

IV. EXPERIMENTAL RESULTS 758

In this section, we present some experimental results of 759

CutTSS. We start with an overview of our experimental 760

methodology. After that, we evaluate our algorithm from the 761

following key aspects: tree construction, packet classification 762

and rule update respectively. 763

A. Experimental Methodology 764

We compare CutTSS with three algorithms: PSTSS, 765

CutSplit and PartitionSort. Priority Sorting Tuple Space 766

Search (PSTSS) is the algorithm with the fastest update 767

performance, which is used in Open vSwitch for flow table 768

lookups. CutSplit is the state-of-the-art decision tree with the 769
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Fig. 11. Number of partitioned subsets.

Fig. 12. Construction time.

fastest classification performance. ParitionSort is the state-of-770

the-art splitting based tree with the best performance trade-off771

between classification and update. To facilitate fair compar-772

ison, we have made some modifications to the open-source773

code of the other three algorithms, and their performances774

are essentially not affected by our modification. We are very775

grateful to the authors of these algorithms, their open-source776

codes and selfless personal help enable us to make a fair777

and justifiable comparison. As a response, our implemen-778

tation of CutTSS is also publicly available on our website779

(http://www.wenjunli.com/CutTSS).780

1) Rule Sets: The rule sets used in our experiments are781

generated using ClassBench, whose size varies from 1k to782

100k. There are three types of rule sets: ACL, FW and IPC.783

Each rule set is named by its type and size, e.g., FW_1k784

refers to the firewall rule set with about 1000 rules. For785

each size, we generate 12 rule sets respectively based on786

12 seed parameter files (i.e, 5 ACL, 5 FW and 2 IPC) in787

ClassBench [30].788

2) Simulation Environment: We measure classification time789

by classifying all packets in trace files generated by Class-790

Bench when it constructs the corresponding rule set. In order791

to evaluate the actual lookup performance of classification792

algorithms, we conduct experiments by omitting caching in793

the fast path and consider only slow path classification for794

each incoming packet. To evaluate the performance of the795

incremental update, we measure update time as the time796

required to conduct one rule insertion or deletion. For each797

rule set, we shuffle rules randomly to generate a sequence of798

update operations, where half of the insertions are randomly799

mixed with half of the deletions.800

3) Machine Environment: All experiments are run on a 801

machine with AMD Radeon 5-2400G CPU@3.6GHz and 8G 802

DRAM. The operating system is Ubuntu 16.04. To reduce the 803

CPU jitter error, we take the average results by running ten 804

times for each evaluation circularly. 805

B. Evaluation on Construction 806

1) Number of Subsets: Since the number of partitioned 807

subsets in CutSplit is the same as in CutTSS, Figure 11 shows 808

the number of subsets in CutTSS, PSTSS and PartitionSort. 809

We find that CutTSS produces a relatively stable number of 810

subsets regardless of the type and size of rule sets, averaging at 811

3.7 subsets across all of the rule sets. This favorable property 812

makes CutTSS more suitable for concurrency. In contrast, 813

the number of partitioned subsets in PSTSS and PartitionSort 814

ranges from 2 to 368 with an average of 151.7 and 20.9 subsets 815

respectively. 816

2) Construction Time: Figure 12 shows the construction 817

time of CutTSS as well as PSTSS, PartitionSort and CutSplit. 818

Clearly, PSTSS is the fastest one among them. In contrast, 819

CutTSS takes a little more time than PSTSS because of its 820

partial tree constructions in the pre-cutting stage. However, 821

even for the rule sets up to 100k, CutTSS can still build 822

decision trees in about one second, much faster than previous 823

decision trees such as EffiCuts and SmartSplit that require 824

almost ten minutes. We can also find that the construction 825

time of CutTSS increases almost linearly with the rule set 826

size, which makes it well suitable for larger classifiers. 827

3) Memory Consumption: Figure 13 shows the memory 828

consumption of CutTSS as well as PSTSS, PartitionSort 829
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Fig. 13. Memory consumption.

and CutSplit. Our experimental results show that our CutTSS830

requires less space than other algorithms, consuming an aver-831

age of 25.8 Byte/Rule across all of the rule sets, while it832

requires 45.4 Byte/Rule, 50.9 Byte/Rule and 243.2 Byte/Rule833

in PSTSS, PartitionSort and CutSplit respectively. We can834

also find that, the memory consumption of CutTSS increases835

almost linearly with the rule set size, which makes it well836

suitable for larger classifiers.837

C. Evaluation on Classification838

1) Average Classification Time: Figure 14 shows the aver-839

age classification time and throughput of CutTSS as well840

as PSTSS, PartitionSort and CutSplit. In order to compare841

the performance of these algorithms, we first compute the842

average times for three different types of rules respectively,843

and then compute the ratio based on these average times. From844

Figure 14(a), (b) and (c), we can see that CutTSS requires845

less time to classify packets, with an average of 0.257 us,846

0.318 us and 0.135 us for each type of rule set respectively,847

while PSTSS consumes an average of 1.765 us, 1.164 us848

and 1.506 us respectively. Thus, CutTSS achieves an average849

of 6.868 times, 3.661 times and 11.156 times speed-up on850

classification performance than PSTSS respectively, almost851

an order-of-magnitude improvement on classification time852

on average. Additionally, the experimental results show that853

Fig. 14. Classification performance.

CutTSS achieves 1.43 times and 1.89 times speed-up than 854

CutSplit and PartitionSort respectively. It should be noted 855

that, although there are much more subsets in PartitionSort, 856

it can still achieve comparable performance to CutTSS. The 857

reason is that, almost all the rules are concentrated in the first 858

few subsets when ordered by maximum priority, so that most 859

lookups in PartitionSort can terminate as soon as a rule is 860

matched in the first few subsets. 861

2) Average Throughput: From Figure 14(d), (e) and (f), 862

we can see that CutTSS achieves an average throughput 863

of 6.013 Mpps (Million packets per second), 6.782 Mpps 864

and 9.235 Mpps for each type of rule set respectively, while 865

PSTSS achieves an average of 0.994 Mpps, 1.016 Mpps and 866

1.396 Mpps respectively. Thus, CutTSS achieves an average 867

of 6.049 times, 6.675 times and 6.615 times improvement on 868

throughput than PSTSS respectively. Compared to CutSplit 869

and PartitionSort, CutTSS also achieves 1.304 times and 870

1.878 times improvement respectively across all of the rule 871

sets. We can also see an interesting phenomenon in Figure 14 872

that the proposed CutTSS has much higher performance for 873

a few rule sets, such as the second rule set and the seventh 874

rule set in Figure 14(e). Actually, this phenomenon is caused 875

by the characteristic of the seed parameter file in ClassBench. 876

In Figure 14(e), the second, the seventh and the twelfth rule 877

sets are generated based on the same seed parameter file, but 878
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Fig. 15. Average memory access.

Fig. 16. Update performance.

with different sizes. By checking the type of terminal nodes879

after pre-cuttings, we find that the ratio of non-leaf terminal880

node in these three rule sets is much less than that in other rule881

sets, meaning that the rules generated based on this specific882

seed file are more evenly distributed than others. Thus, most883

of the rules in these rule sets can be separated into leaf nodes884

and be searched with linear search as traditional decision trees.885

However, this phenomenon does not exist for the twelfth rule886

set in Figure 14(e), the reason is that, when the rule set887

contains more and more rules, there will be more and more888

tuples needed to be searched in big subset, which may become889

the performance hurdle of CutTSS.890

3) Average Memory Access: Figure 15 shows the average 891

memory access of CutTSS as well as PSTSS, PartitionSort and 892

CutSplit. Note that we think traversing a tree node, a rule or a 893

tuple as one memory access in our experiments. It is obvious 894

that CutTSS is significantly better than other three algorithms. 895

Compared to PSTSS, experimental results show that CutTSS 896

achieves an average of 3.8 times reduction on the number 897

of memory accesses. Compared to PartitionSort and CutSplit, 898

CutTSS also achieves 2.3 times and 1.2 times improvement 899

on average. 900

D. Evaluation on Incremental Update 901

Since CutSplit can not support fast incremental updates, 902

we just evaluate update performance among CutTSS, PSTSS 903

and PartitionSort. Figure 16 shows the average incremental 904

update time and throughput of CutTSS as well as PSTSS 905

and PartitionSort. From Figure 16(a), (b) and (c), we can see 906

that CutTSS requires less time to update rules, achieving an 907

average of 0.464 us, 0.246 us and 0.273 us for each type 908

of rule set respectively, while PSTSS consumes an average 909

of 0.314 us, 0.261 us and 0.301 us respectively. Additionally, 910

our experimental results also show that, CutTSS achieves an 911

average of 2.516 times speed-up on update time than Partition- 912

Sort across all of the rule sets. From Figure 16(d), (e) and (f), 913

we can see that both CutTSS and PSTSS can achieve high 914

throughput for updates, achieving at an average of 3.734 Mpps 915

and 3.583 Mpps respectively. Thus, CutTSS has comparable 916

update performance to PSTSS, which is used in Open vSwitch. 917

V. CONCLUSION 918

Open vSwitch implements a variant of TSS instead of 919

decision tree-based algorithms despite their better performance 920

on lookups, because the latter have poor support for fast 921

incremental updating of rules, which is an important metric 922

for SDN switches. However, TSS-based schemes can achieve 923

fast updates but have a performance concern. 924

To achieve fast lookup and update at the same time, we pro- 925

pose CutTSS, a two-stage framework consisting of heteroge- 926

neous algorithms to adaptively exploit different characteristics 927

of the rule sets at different scales. In the first stage, partial 928

trees are constructed from rule subsets grouped with respect to 929

their small fields. This grouping eliminates rule overlap at large 930
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scales, thereby enabling very efficient pre-cuttings without any931

rule replications. The second stage handles packet classifica-932

tion at small scales, where PSTSS is applied for these subsets933

to facilitate tree constructions. Overall, CutTSS exploits the934

strengths of both decision tree and TSS to circumvent their935

respective weaknesses. Experimental results show that CutTSS936

has comparable update performance to TSS in Open vSwitch,937

while achieving almost an order-of-magnitude improvement938

on classification performance over TSS.939
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