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Abstract—Network monitoring and management require accurate statistics of a variety of flow-level metrics such as flow sizes, top-k

flows, and number of flows. Arguably, the current best technique to measure these metrics is sketches. While a significant amount of

work has already been done on sketching techniques, there is still a lot of room for improvement because the accuracy of existing

sketches varies with changing characteristics of network traffic. In this paper, we propose the idea of using machine learning to improve

the accuracy of sketches, and propose a generic machine learning framework to reduce the dependence of accuracy of sketches on

network traffic characteristics. We further present three case studies, where we applied our machine learning framework on sketches

for measuring three flow-level network metrics, namely flow sizes, top-k flows, and number of flows. We implemented and extensively

evaluated this framework for these three metrics using both real-world and synthetic traffic traces. To the best of our knowledge, this is

the first work that uses machine learning to reduce the dependence of sketching techniques on the characteristics of network traffic. We

have released all our traces and implementation codes at Github.

Index Terms—Network measurements, sketch, machine learning

Ç

1 INTRODUCTION

1.1 Motivation

NETWORK monitoring and management tasks such as
traffic engineering [21], [22], [30], [39], [45], anomaly

detection [32], [40], [43], and sharing web caches [16] require
accurate and timely statistics of a variety of network flow-
level metrics such as flow sizes [6], [9], heavy hitters [3], [7],
number of flows [19], heavy changers [24], and several
others. These flow-level metrics often have to be measured
from high speed network traffic, which cannot be stored for
off-line analysis due to its volume. One of the most effective
methods to measure such flow-level metrics is to use sketch-
ing techniques. A sketching technique consists of two enti-
ties, a sketch, which is comprised of a set of counters or
bitmaps associated with hash functions, and an algorithm,
which is comprised of a set of simple operations that record
approximate information about the metric of interest from
each flow into the sketch using a small amount of memory.

At any given point, during or after recording the informa-
tion, the algorithm can also estimate the metric of interest of
any target flow by applying appropriate statistical techni-
ques on the sketch. Sketching techniques have found a wide-
spread adoption in a variety of network monitoring and
management tasks such as estimation of flow sizes [9], [15],
heavy hitters [7], number of flows [19], [20], heavy changers
[24], packet delay [34], latency [37], and persistent items
[25]. The two key reasons behind such widespread adoption
are that sketching techniques enable network administra-
tors to 1) estimate the metric of interest with a bounded
error, and 2) do a provable trade off among the accuracy of
the estimation, the memory used to store the sketch, and the
computational overhead.

While researchers have made significant contributions in
designing sketching techniques, and those techniques work
well in specific scenarios, we argue that a significant room
for improvement still exists because the accuracy of existing
sketches may degrade with changing characteristics of net-
work traffic. The reason behind this is that the information
stored in sketches is only approximate and existing sketches
estimate the amount of noise in the stored information and
remove it when answering any query. The idea of estimat-
ing the amount of noise is intuitive. To model this noise,
several existing sketches make assumptions about network
traffic characteristics and use a single theoretical model to
quantify the noise. However, practically, the amount of
noise depends on the distributions of various characteristics
of network traffic and the assumptions do not always hold.
Consequently, as the characteristics of network traffic
always vary over time, existing sketches can not always effi-
ciently model noises. So the accuracies of existing sketches
also vary. [5], [10]. Unfortunately, in the current practice of
designing the sketching algorithms, it is impossible to elimi-
nate such assumptions about the characteristics of network
traffic because these assumptions are required to make the
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theoretical development of statistical techniques tractable.
One candidate solution to overcome the challenges intro-
duced by the changing network traffic characteristics is the
following three-step approach: 1) foresee all possible scenar-
ios that can occur in practice, 2) make appropriate assump-
tions for each scenario, and 3) develop a dedicated
statistical technique to estimate that metric for each sce-
nario. Unfortunately, this three-step approach has two
major shortcomings. First, it is not always possible to fore-
see all possible scenarios that can occur in practice. Second,
manually developing statistical models for each scenario is
a laborious and time-consuming task, and it is not always
possible to derive a closed form or practically usable statisti-
cal technique for each scenario.

1.2 Our Solution

In this paper, we explore how to improve the accuracy of
sketching algorithms by reducing their dependence on the
characteristics of network traffic. By achieving this objective,
we envision that the practice of designing sketching techniques
will fundamentally change for better because researchers can then
shift their attention from foreseeing all scenarios and individually
handling them to increasing the accuracy of sketching algorithms
and reducing the memory footprints of the sketches. To achieve
this objective, we propose the idea of using machine learn-
ing and propose a generic machine learning framework that
learns the current characteristics of network traffic and
adapts the estimation algorithms of sketches to those char-
acteristics on the fly, which in turn improves the accuracy of
the sketches. To further improve the estimation accuracy,
we classify flows into different clusters and train each clus-
ter an estimation model.

More specifically, instead of using statistical techni-
ques, we continuously train machine learning models
using a very small number of samples from the same traf-
fic whose information is stored in a relatively “small”
sketch, to dynamically remove the appropriate amount of
noise. Because the models are trained using only a small
fraction of packets in the traffic rather than all packets,
we keep the computational cost of training small and
amenable for implementation on commodity hardware.
When estimating the flow-level metric, we use these mod-
els to obtain the estimate. As these models are trained
using samples from the same traffic from which the
sketch was built, it automatically learns and adapts to the
characteristics of that traffic. Consequently, the same
sketching technique gives very high accuracy under all
types of scenarios, without requiring to manually foresee
all the scenarios and then manually design statistical tech-
niques for them. In addition, as we train machine learning
models continuously, our model will be frequently updated to
handle workload changes.

To validate the feasibility of using machine learning tech-
niques for reducing the dependence of sketching algorithms
on network traffic characteristics, we incorporated machine
learning in the sketching techniques for estimating three
well-known flow-level metrics, namely flow sizes, top-k
flows, and the number of flows. More specifically, we aug-
mented the statistical estimation techniques of the algorithms
of these sketching techniques with models trained using

machine learning. We then implemented and extensively
evaluated these sketching techniques augmented with
machine learning in a variety of scenarios. Our results show
that machine learning helps decrease the error rates of exist-
ing sketches by orders of magnitude. Furthermore, the
machine-learning-based sketching techniques show no nota-
ble deterioration of accuracy with changes in the characteris-
tics of network traffic. These results show that machine
learning has the potential to not only make sketching algo-
rithms less dependent on the characteristics of network traffic
but also open a new door for improving the accuracy and
decreasing the memory footprint of sketches. To the best of
our knowledge, this is the first work that aims at reducing the
dependence of sketching techniques on the characteristics of
network traffic and proposes to use machine learning to
achieve this objective.

Contributions: In summary, we make following three key
contributions in this paper.

� We introduce the idea of using machine learning
to improve the accuracy of sketches. We present a
generic framework to augment sketching techni-
ques with machine learning by learning network
traffic characteristics. We further optimize our
framework by training different machine learning
models for different flows. Our learned model
will be periodically updated in case of characteris-
tics changes.

� We present three case studies of our framework by
applying machine learning to three typical kinds of
sketches for three well-known flow-level metrics:
flow sizes, top-k flows, and the number of flows.

� We implemented our framework and performed
extensive experiments using real-world network
traffic traces to evaluate the improvement in accu-
racy of existing sketches due to machine learning.
Our results show that machine learning helps
decrease the error rates of existing sketches by orders
of magnitude.

2 BACKGROUND AND RELATED WORK

2.1 Estimation of Flow Size

There are three well known classic sketching techniques
that are frequently used in recording and estimating the
sizes of flows: count-min (CM) sketch [9] and conservative-
update (CU) sketch [15]. Their data structures are the same:
each of them consists of d arrays of counters, and each array
has w counters, as shown in Fig. 1. We represent the ith

array of each sketch with Ai and the jth counter of this ith

array with Ai½j�, where 04i < d and 04j < w. Each array
Ai is associated with a hash function hið:Þ. Before the algo-
rithm of the given sketching technique starts recording

Fig. 1. Structure of CM and CU sketches.
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information about the sizes of the flows, all counters are first
initialized to 0.

Recording: To record information about the sizes of flows
in the given sketch, on the arrival of each packet, the algo-
rithm of that sketching technique first obtains the flow ID f
from the packet header and then computes the d hash func-
tions hiðfÞ, where 04i < d. The outputs of these d hash
functions map the flow ID f to d counters A0½h0ðfÞ%w�:::
Ad�1½hd�1ðfÞ%w�. To make the subsequent discussion easy
to follow, we name these d counters hashed counters of

f . After this point, the algorithm of each sketching tech-
nique uses different rules to increment one or more of these
hashed counters: the CM sketch increments all hashed
counters by 1; the CU sketch increments only the smallest
hashed counter(s).

Querying:To respond to a query requesting an estimate of
the current size of a flow with ID f in a given sketch, the
algorithm of the corresponding sketching technique first
computes the d hash functions and retrieves the d hashed
counters of f . The algorithms of the CM and CU sketches
report the value of the smallest of the d hashed counters as
the estimate of the current size of the flow f .

2.2 Estimation of Top-K Flows

Top-k flows refers to the problem of identifying the k flows
that have the largest number of packets among all flows, and
estimating the sizes of each of these top-k flows. The most
commonly used approach to identify top-k flows and to esti-
mate their sizes is to use a CM sketch with a min-heap [7], [9]
According to this method, the algorithm first initializes all
counters of a CM sketch to 0 and initializes a min-heap with
k nodes. Each node in the min-heap has two fields: a flow ID
and a counter. At initialization, the flow ID field of each node
is empty and the value of each counter is 0.

Recording: On arrival of any packet with flow ID f , the
algorithm first inserts it into the CM sketch, i.e., increments
the d hashed counters of f by 1. After that, if the value of the
smallest counter among its d hashed counters is larger than
the counter in the root node of the min-heap, the algorithm
checks whether the flow ID f is currently in the flow ID field
of any node in the min-heap. If f is already in the flow ID
field of a node in the min-heap, the algorithm increments
the counter of that node by 1; otherwise, it replaces the
value in the flow ID field of the root node with f and the
counter in the root node with the current estimate of the
size of f as calculated by the CM sketch, i.e., the current
value of the smallest hashed counter of f . Next, the algo-
rithm rearranges the nodes of the min-heap so that it
becomes a valid min-heap. To speed up the process of
checking whether a given flow ID is in the min-heap, one
effective way is to use a hash table, in which the key is the
flow ID and the value is the pointer of the node in the min-
heap containing that flow ID. Every time a new flow ID is
inserted into (or an existing flow ID is removed from) the
min-heap, the corresponding entry in the hash table is
updated.

Querying: To answer a query about the top-k flows, the
algorithm simply returns all flow IDs in the min-heap along
with their corresponding counter values, which are the esti-
mates of those flow sizes.

2.3 Estimation of the Number of Flows

There are several common techniques that use sketches to
estimate the number of flows, such as FM sketch [19],
LogLog [14], and HyperLogLog [18]. In this paper, we focus
on the optimization of FM sketch. Flajolet and Martin pro-
posed an approximate counting algorithm that is exten-
sively used to estimate the number of flows and is
considered one of the best techniques for this task [7]. It is
named FM sketch [19]. Similar to the sketches we have dis-
cussed until now, the sketch of FM sketch is also comprised
of d arrays. However, instead of w counters per array, each
array in this sketch has w bits. To stay consistent in nota-
tions, as shown in Fig. 2, we represent the ith array of the
FM sketch with Ai and the jth bit of this ith array (counting
from right to left) with Ai½j�, where 04i < d and 04j < w.
Each array Ai is associated with an independent hash func-
tion hið:Þ. Unlike the hash functions used in sketches we
have described until now, the hash functions used in the
FM sketch do not have uniformly distributed output. More
specifically, the hash function hið:Þ maps half of all flow IDs
to bit 0 (i.e., LSB) of the ith array, a quarter to bit 1, and so
on. Formally, its distribution is defined as Pfhið:Þ ¼ jg ¼
1=2ðjþ1Þ, where 04j < w. Such hash functions are actually
very easy to implement [7], [19].

Recording: To record information about the number of
flows in the FM sketch, for each arriving packet, the algo-
rithm of FM sketch computes the d hash functions hiðfÞ and
sets the bits Ai½hiðfÞ%w� to 1.

Querying: Let Li represent the position of the rightmost
zero in the ith array, where 04Li < w and 04i < d. We
call Li the low-bit of the ith array. To answer the query
about the number of flows at any point in time, the algo-

rithm of the FM sketch returns 1:2928 � 2
1
d

Pd�1

i¼0
Li as an esti-

mate of the number of flows seen until that point in time. In
Fig. 2, where d ¼ 3 and w ¼ 10, L1 ¼ 5, L2 ¼ 4, L3 ¼ 3, and
the estimate of the number of flows is, thus, 20.68. To under-
stand the logic behind the estimation formula of FM sketch
mentioned above, we refer the interested reader to [19].

2.4 Other Prior Sketches and Key Limitations

In addition to the three sketching techniques we presented,
several other sketching techniques have also been proposed
to estimate flow sizes, such as Count sketch [6], CMM
sketch [13], and Counter braids [29]. Similarly, other techni-
ques for top-k flows include Count sketch with min-heap
[6], Augment sketch [33], and others [11]. Additional techni-
ques for estimation of number of flows include Bloom filters
[8], distinct sampling [17], [20], and kMin [4].

Sketches also find applications in several other network-
ing related tasks such as detecting heavy changers and
DDoS attack [12], [23], [24], and latency measurement [34],

Fig. 2. Structure of the FM sketch.
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[36]. Another direction of work on sketches, such as Open
sketch [41], UnivMon [27], FlowRadar [26], SCREAM [31],
RISC [28], and CSAMP [35], provide scalable system archi-
tectures or approaches to achieve flexible use of various
sketches in a wide range of network functions.

2.5 Key Limitations of the Prior Sketches

The key limitation of all of these sketching techniques is that
their accuracy varies with changing characteristics of net-
work traffic. This happens because when answering
queries, existing sketching techniques cannot accurately
remove the noise from the measurements because the
amount of noise is a function of various characteristics of
the network traffic, and these characteristics are not known
in advance. The design goal of this paper is to remove the
noise as accurately as we can. As mentioned in Section 1,
the shortcomings of the three-step approach makes it diffi-
cult to derive a closed form or practically usable statistical
technique for each scenario. To address this issue, we pro-
pose a generic machine learning framework to dynamically
and automatically learn the noise and remove it.

3 MACHINE LEARNING FRAMEWORK

3.1 Rationale

As mentioned earlier, the information stored in sketches is
only approximate. Consequently, when algorithm of a
sketch estimates the value of that metric for any arbitrary
flow, that estimated value is essentially comprised of two
parts: 1) actual value of the metric, and 2) noise. Algorithms
of existing sketches either simply do not try to remove this
noise, such as in the cases of CM and CU sketches, or try to
estimate the amount of noise and remove it before returning
the answer. To quantify this noise, several existing sketches
make assumptions about network traffic characteristics and
use a single theoretical model to quantify the noise. How-
ever, practically, the amount of noise depends on the distri-
butions of various characteristics of network traffic and the
assumptions do not always hold. Consequently, as the char-
acteristics of network traffic vary over time, the accuracies
of existing sketches also show significant difference [5], [10].

Keeping this limitation of prior art in view, our objective
is to design a framework that can make the accuracy of
sketching algorithms largely independent of any assump-
tions about the characteristics of network traffic. The key
intuition behind our proposed framework is that instead of
using a single theoretical model, the sketching algorithms
should learn the network traffic characteristics on the fly
and use adaptive theoretical models to quantify the noise.
The obvious candidates for an adaptive theoretical model
are the machine learning techniques. Next, we describe the
components of our proposed framework that enables

sketching techniques to accurately measure flow-level met-
rics largely independent of the characteristics of network
traffic.

3.2 The Framework

Fig. 3 shows the block diagram of our framework. We should
notice that all these processes are continuously executing in order
to periodically update the model. Otherwise, the characteristic
may change and make our learned model not work anymore. The
block ”Building regular sketch” represents the process of
recording information into the sketch, which we have
already described in detail in Section 2 using CM and CU
sketches as examples. We name the sketch generated by this
block regular sketch. Next, we describe the remaining blocks
in the figure.

3.2.1 Sampling

As the rate at which the traffic passes through a measure-
ment point (such as a switch) can be very fast, the sketches
for flow-level metrics become “full” in seconds, and have to
be sent to a remote server for storage. These remotely stored
sketches are then used for answering queries. Every time a
sketch is transferred to remote storage, a new sketch is ini-
tialized at the measurement point. To incorporate the char-
acteristics of network traffic that generated any given
sketch, one option is to use all packets when building a
machine learning based adaptive theoretical model to accu-
rately estimate the metric of interest. We represent the set of
flow IDs of all packets that generate a given sketch by P.
Unfortunately, this can create a lot of overhead and the
framework may not be able to keep up with line rate. The
other option, inspired by tools such as sFlow [38], is to
employ sampling and use only a small percentage of all
packets to generate the models. We represent the set of flow
IDs sampled from P by S. Note that if n sampled packets
have a flow ID f , then that flow ID will appear in the sam-
pled set S n times. In other words, the sampled set S is
essentially a multi-set. In our framework, the network man-
ager can specify the sampling rate based on the available
resources. To keep our implementation fast, we choose to
sample packets not flows. To achieve a sampling rate of
1 in � packets, we advocate saving the header of one packet
after every � � 1 packet, irrespective of the packet’s flow ID.
A higher sampling rate, obviously, leads to higher estima-
tion accuracy.

3.2.2 Machine Learning

In our framework, next, we build a sketch that is relatively
smaller compared to the ”Building regular sketch” block,
using only the packets in sampled set S. We name the
resulting sketch learning sketch. To build the learning

Fig. 3. Block diagram of our generic framework to augment sketches with machine learning.
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sketch, there are two options. The first option is to build it at
the switch and send it to the server along with the regular
sketch. The other option is to send packet headers directly
to server and build learning sketch at the server. Both
approaches are fine and the choice depends on the available
computational resources at the switch and the bandwidth
between the server and the switch. The block “Building
learning sketch” in Fig. 3 represents the process of building
this learning sketch.

After generating the learning sketch, in our framework,
we extract appropriate features from the learning sketch to
build the adaptive theoretical model. The features that we
extract depend on the flow-level metric being measured, and
naturally are different for different metrics. The ground truth
for training comes from the set S. The block ”Feature Extrac-
tion, Training set generation” in Fig. 3 represents the process
of extracting these features and generating a set of training
samples. Using the training sample, in our framework, we
train a machine learning based theoretical model, which we
later use for answering queries. As sketches are mainly
applied as high speed data stream scenarios, the learning
model should be easy and fast to train. As a results, we
mainly use simple learning regression as our learning algo-
rithm. The block “Training” in Fig. 3 represents the process
of training. Finally, using the regular sketch along with this
machine learning based theoretical model, the framework is
now ready to answer any queries. The block “Querying” in
Fig. 3 represents the process of answering the queries.

3.2.3 Optimization

As mentioned above, existing sketches always contain two
steps of optimization: 1): assuming network traffic charac-
teristics and storing extra information of noise 2): estimating
and removing noise according to extra information. These
processes depend on assumptions and extra memory usage.
Our training features are extracted from a normal sketch
without any assumptions or extra information, so intui-
tively they may not contain enough information on the
amount of noise in the sketch. Moreover, a lot of previous
sketches focus on separate elephant flows and mice flows
because noise has different influences on them. For elephant
flows, previous works always focus on accurately recording
their information. For mice flows, previous works focus on
removing noise for them instead. In our machine learning
sketch, it is also not proper to use a single model for all
flows.

To solve above problems, we proposed an enhanced
machine learning sketch. Its main idea is to classify flows
into different clusters. We firstly classify flows into different
clusters according to their basic features we extracted using
a normal sketch. We will train different models for different
clusters of flows. For flows that are easily influenced by
noise (typically mice flows), we further add more features
with noise information in our machine learning model.
Extra features with noise information can help machine
learning model estimate and remove noise for those flows.
For flows that are difficult to be influenced by noise (typi-
cally elephant flows), we hope the machine learning model
will focus on flows’ own characteristics instead of noise. So
they will have relatively fewer features for training.

4 CASE STUDIES

Now, we present three case studies to show how we apply
our framework to different sketches that are used to mea-
sure three well-known metrics: flow size, top-k flows, and
number of flows. In presenting these case studies, we will
also give concrete examples of features, the format of train-
ing samples, machine learning algorithms for training, and
the process of answering queries.

4.1 Estimating Flow Sizes

4.1.1 Basic Version

In applying our framework to the sketches used for flow
size estimation, we started with the intuition that the flows
for which the estimation error is already acceptably small
do not need further improvements. It is the flows for which
the estimation error is high that need further improvement
and where machine learning can help. We name such flows
that can experience high estimation error as error-prone
flows. Therefore, our very first objective is to automatically
identify the flows that can potentially experience high error.

To explore how machine learning can identify such
flows, we took a real network traffic traces containing 10M
packets and generated a CM sketch from it. By conducting
this experiment with many different packet sets, we studied
the d hashed counters of all flows whose estimates experi-
enced high errors. We observed that for the majority of such
flows, the smallest counter value v1 is much smaller than
the second smallest counter value v2. Based on this observa-
tion, we propose to use a simple and fast method to distin-
guish between these flows and the flows whose estimates
experience acceptably low error. Given an incoming flow,
we compute hash functions and get the two smallest coun-
ters v1 and v2. If jv1 � v2j is greater than a threshold u, where
u50, we regard this flow as an error-prone flow. Next, we
describe how we apply our machine learning framework to
improve the accuracy of sketches in estimating the sizes of
error-prone flows. More specifically, we describe how each
block in Fig. 3 works when augmenting machine learning
with prior sketches (i.e., CM and CU, CSM sketches) that
are used to estimate flow sizes.

Building Regular Sketch: On arrival of each packet, the
algorithm of the sketching technique under consideration
uses its usual method to record information about that
packet in the regular sketch. In the improved version, we
also added some extra bits in each counter to stored
addresses,which will be discussed later.

Sampling: Depending on the sampling rate set by the net-
work administrator, we sample the packets for building
learning sketch, and get the sampled set S.

Building Learning Sketch: We generate a learning sketch
using the packets in the sampled set S. In case of the prob-
lem of flow size estimation, the framework also maintains a
hash table to record the actual values of flow sizes, which
are later used as ground truth in training machine learning
models. On inserting each packet of the sampled set S into
the learning sketch, we also insert the flow ID of this packet
into the hash table which is used to accurately record the
flow-sizes. One issue of building learning sketch is the
determination of the sketch size. Intuitively, the sketch size
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should be proportional to the number of packets to provide
a compatiblity of the learning sketch and regular sketch.

Feature Extraction and Training Set: We first traverse
through all flow IDs in the hash table and identify the error-
prone flows by comparing the smallest counter with the
threshold u. After identifying all error-prone flows, we use
them for training by using each error-prone flow as a train-
ing sample. From our extensive tests on real traces, we
found that the actual size of any given flow is almost a lin-
ear combination of the hashed counters. For any given
error-prone flow, the values of its d hashed counters in the
learning sketch serve as the features. The actual values of
the packet counts of the flow, recorded in the hash table,
serve as target. We choose linear regression as our machine
learning algorithm. The advantage of linear regression is its
very low computational and space complexity. In addition,
linear regression is a simple machine learning model. So we
do not need to worry too much about over-fitting. We also
do not need to partition validation set and can apply all
data to train the model.

Training: We apply linear regression on the training sam-
ples to obtain a linear regressive model that can estimate
the size of any given error-prone flow using its d hashed
counters.

The hypothesis function is shown as following, where ais
are the learning parameters, flowcount is the queried value,
and Ai½hiðfÞ%w� represents value of the ith counter.

flowcount ¼
Xd�1

i¼0

aiAi½hiðfÞ%w�: (1)

The equivalent form written below extracts the noise term
explicitly. This form exhibits our object of learning the noise
more clearly. The first term on the right is the query value
of normal sketch, and the second term is the noise term. The
noise term is a linear function of corresponding counter val-
ues.

flowcount ¼ minfAi½hiðfÞ%w�g þ
Xd�1

i¼0

biAi½hiðfÞ%w�: (2)

Querying: To respond to a query requesting an estimate of
the current size of a flow, we first check whether this flow is
error-prone flow. If the flow is not an error-prone flow, then
we use the conventional algorithm of the sketching tech-
nique to estimate the size of the flow. If the flow is an error-
prone flow, then we estimate its size by applying the trained
linear regressive model on the values of the d hashed coun-
ters of this flow in the regular sketch.

4.1.2 Enhanced Version

Although our basic version is quite intuitive and works quite
well according to our experiments, it has two drawbacks.

1) Only using d hash counters as features may not provide
enough information on noise and hash conflicts. Typically, a
counter in a normal CM sketch consists of target flow ID and
other flow IDs due to hash conflicts. We call them conflict IDs
in the rest of our paper. For d hashed counters, they only
have our target ID in common. Consequently, when learning
only from d hashed counters, our features may not provide
enough information on conflict IDs.

2) We still made empirical assumptions. Our basic ver-
sion relies on the recognization of error-prone flows. We
find that it is quite hard to decide the threshold u, and the
performance of our algorithm is quite sensitive to this
hyperparameter. Although the recognization of error-prone
flows prevents applying a single model for all flows, our
recognization rule is an empirical rule based on our
observation.

To solve the above drawbacks, we further proposed our
enhanced version. Our enhanced version adds new features
on noise information (conflict IDs) for each counter with a
small counter value. It also no longer differentiates error-
prone flows with certain rules. Instead, the enhanced ver-
sion classifies flows into different clusters and train differ-
ent models for each cluster.

Enhanced Version One with New Features Selection: When a
flow has been hashed to d counters in a normal CM sketch,
we usually think the smallest counters value contains most
of the ID’s information. So, we can use the smallest counter
value of a certain ID to provide its information if this ID acts
as noise (conflict ID). A naive way to store these extra fea-
tures is to add pointers to each counter. Specifically, for
each insertion, the inserted ID is hashed into d different
counters. We store the address of the smallest counter in all
these d counters and refer the address stored in each counter
as its pointed counter. Each counter and its pointed counter
contain the same information of a certain flow ID which
may be noise in the counter. In the rest of our paper, we
refer this method as Pointer-Based Version or Enhanced Ver-
sion One. However, the pointer will lead to heavy memory
overhead, we need to find a more efficient way to store
these extra features.

Enhanced Version Two with New Features Storage: Assum-
ing we allocate b bits for each counter in the CM sketch, we
divide each counter into two equal-sized parts (both b=2
bits). The counter uses the second part to record the counter value
and the first part to store the extra feature. During insertion, we
still try to store the smallest counter value in all these d
counters’ first parts. According to the value in the smallest
counter and remained counters, there are two different
cases.

Case 1: For values in the smallest counter and a remained
counter, if at least one of them needs more than b=2 bits to
represent, no further operation is needed and we will try to
store the smallest counter value into the next remained
counter.

Case 2: If both the smallest counter value and the value in
a remained counter takes less than b=2 bits to represent, we
store the smallest counter value into the first part of the
remained counter. After that, we turn to the next one.

As the insertion continues, we will increment the second
part of hash counters. If b=2 bits are no longer enough, we
will clear its first part and the counter becomes a normal
counter with only one part. We add an extra bit in each
counter as a flag to identify if the counter has two parts or
one. In summary, if the value in the counter is big, then no
extra features will be stored in it and vice versa. We refer
this version as Enhanced Version Two.

Flow Classification: For each flow, each of its d hash coun-
ters may contain two parts (according to the flag). Conse-
quently, there are d þ 1 different cases with d; d þ 1 � � � 2d
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features respectively, thus they are automatically classified
into d þ 1 clusters according to their number of features.
Intuitively, if an ID has more hash counters with big values,
it is more likely to be an elephant flow and noise will do less
harm to it. So the more hash counters with big value an ID
has, the less feature and information it will need to repre-
sent the noise. This intuition is consistent with our classify-
ing method. In a special case, an ID only has d features will
indicate the values of its d counters are all big. In such cases,
a normal CM sketch may be accurate enough and the corre-
sponding trained model for the group may be very closed
to a normal CM sketch: only the parameter of the smallest
counter has none-zero value 1.

Training: As flows are clustered according to their own
size and the size of conflict flows in their hash counters
(based on relative size with 2b=2), so flows and their noise in
each cluster have similar distribution. For the jth model
(j ¼ 0 � � � d), there are d þ j features. Consequently, we will
train a linear regression model for each cluster. Let ais and
a0

is be the learning parameter, flowcount be the queried
value, and Di represents value of the first part in the ith

two-part counter. Then the improved formula is:

flowcount ¼
Xd�1

i¼0

ðaiAi½hiðfÞ%w�Þ þ
Xj�1

i¼0

ða0
iDiÞ: (3)

Specifically, all counters in our enhanced versions are sorted
in order according to their values.

Querying: In the enhanced vision, we will first see how
many features an ID has and selected the corresponding
model according to its feature number. Then we estimate its
size using those features and the model.

4.2 Estimating Top-K Flows

Unlike flow size estimation which suffers from only one
type of error, i.e., the estimation error, top-k flow estimation
suffers from two types of errors, i.e., estimation error and
misclassification error. Estimation error in top-k flow prob-
lem is the same as that in the flow size estimation problem,
i.e., the error in the estimate of the size of flow returned by
the algorithm of the sketching technique. Misclassification
error is defined as the percentage of flows among the top-k
flows returned by a scheme that are actually not among the
top-k flows and were erroneously declared by the scheme
as being among the top-k flows. The misclassification error
occurs primarily due to the over-estimation error of the CM
sketch in early periods, which causes some flows that actu-
ally do not belong to the top-k flows to be mistakenly
inserted into the min-heap. For the sake of presentation, in
this section, we call such flows mice flows.

We have two tasks in top-k flow estimation problem: 1)
classification task to reduce the misclassification error, and 2)
estimation task to reduce the estimation error. Before describ-
ing how we apply our machine learning framework to solve
these two tasks, we first present our proposed method to
reduce the misclassification error. For reducing the misclas-
sification error, we leverage the fact that after the ID of a
mice flow along with its currently estimated size is inserted
into a min-heap, its counter is rarely incremented compared
to the flows that are correctly identified as among the top-k
flows and entered into that min-heap. The explanation to

this fact is simple. After an ID being inserted in a min-heap,
its increasing size will be recorded accurately. For a mice
flow inserted in the min-heap, it will be rarely incremented
or it is not a mice flow. This argument is valid for both regu-
lar and learning min-heaps. Consequently, if we can keep a
track of how many times the counter of each flow in the
min-heap is incremented after it is inserted i.e. the final and
initial values of each flow in the min-heap, we can easily
identify the flow IDs in the min-heap that are mice flows.
To enable such tracking, we add a third field in each node
of the regular min-heap, namely initial counter. Whenever a
new flow ID is inserted into the regular min-heap, the value
of the initial counter field is set to the current estimate of its
size, as determined by the regular CM sketch. Next, we
describe how we apply our machine learning framework to
reduce the misclassification and estimation errors.

Building Regular Sketch: On arrival of each packet, we add
the information of that packet to the regular CM sketch and
update the regular min-heap and regular hash table using
the method described in Section 2.2.

Sampling: Depending on the sampling rate set by the net-
work administrator, our framework samples the packets for
building learning CM sketch and corresponding learning
min-heap, and get the sampled set S.

Building Learning Sketch: We generate a learning CM
sketch and corresponding learning min-heap and learning
hash table using the packets in set S. In the improved ver-
sion, different from the regular sketch, we set the size of
min-heap to 2k, so that there will be approximately same
positive samples and negative samples in the min-heap and
our machine learning model generalize better.

Feature Extraction and Training Set: We use all flow IDs in
the learning min-heap to generate training sets for both clas-
sification and estimation tasks. However, for each task, we
use different features. For classification task, we chose to use
the values of the d hashed counters of each flow in the learn-
ing CM sketch and the difference between the initial counter
field and the counter field in the learning min-heap as fea-
tures, and the ground truth whether this flow ID is correctly
inserted into the learning min-heap or not as class label. We
found that the values in the counter field in the min-heap
can represent the feature of flow sizes much better than the
d hashed counters of each flow in the learning CM sketch.
Thus in the improved version, we only use the value in the
initial counter field and the counter field in the learning
min-heap as features i.e. the finial values and the times of
increment for a linear model.

For estimation task, again, similar to the flow size estima-
tion task, we use the values of the d hashed counters in the
learning CM sketch as the features, and use the actual size
of that flow as target, as shown in Equations 1 and 2, to train
the linear model. To reduce the hash conflicts in the CM
sketch and make a better use of memory, for a flow in the
min-heap, we only increment the counter node in the min-
heap while d hashed counters in CM sketch will remain the
same. When flow in the min-heap has been replaced by
another flow, we add its incremented times in the min-heap
to d hash counters at one time.

Training: We choose to use logistic regression as our
machine learning algorithm for the classification task, and
use linear regression for the estimation task. For the
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classification task, we also tried support vector machine, but
observed similar accuracy. We finally use the logistic regres-
sion model due to its very low computational and space
complexity.

The hypothesis function is shown as following, where ais
and b are learning parameters.

label ¼ 1=ð1 þ expð�zÞÞ (4)

z ¼
Xd�1

i¼0

aiAi½hiðfÞ%w� þ bðfinalðfÞ � initialðfÞÞ (5)

The hypothesis function takes exactly the form of logistic
regression. label is a boolean value representing whether a
flow is in top-k or not. label ¼ 0 means that the flow is not a
top-k flow and vice versa. The exponent is a linear combina-
tion of chosen features which we described above under
Feature Extraction and Training Set Part.
Ai½hiðfÞ%w� represents the counter value. initialðfÞ and
finalðfÞ represents the initial and final values of a flow in
the heap.

Enhanced Version: In our enhanced version, similar to Sec-
tion 4.1.2, we add more features and train different models
for different clusters. We add an extra term

Pj�1
i¼0ða0

iDiÞ to
equation 5.

Querying: To answer a query about the top-k flows, for
each flow with ID f in the regular min-heap, we estimate its
probability of belonging to top-k flows by applying logistic
regression model. We can simply regard the flows with a
probability more than 0.5 as a top-k flow or we can set the
min-heap a little larger than k and get the flows with the k
highest probability as the top-k flows and use the final value
in the min-heap to estimate its size. Finally, we return the
flow IDs remaining in the min-heap and the corresponding
estimated sizes.

4.3 Estimating Number of Flows

Accurately estimating the number of flows is one of the
most important tasks in network management and monitor-
ing [7]. The FM sketch is accurate only when d is large for
estimating the number of flows. Unfortunately, that
requires a large amount of high-speed memory. This is one
of the biggest shortcomings of FM sketch. With the help of
machine learning, we aim to achieve the required accuracy
using a smaller value of d. Next, we describe how we apply
our machine learning framework to reduce the error in esti-
mating the number of flows.

Building Regular Sketch: On arrival of each packet, we use
the algorithm of FM sketch to record information about that
packet in the regular sketch using the method described in
Section 2.3.

Sampling: Depending on the sampling rate set by the net-
work administrator, we sample the packets for building
learning FM sketch and get the sampled set S.

Building Learning Sketch: Unlike the sketches discussed
until now, a single learning FM sketch only provides one
training sample. Consequently, instead of generating a sin-
gle learning FM sketch from sampled set S, we first create
multiple subsets of the sampled set S, and then generate a
learning FM sketch from each of those subsets. Let the num-
ber of training samples we want to generate be z. To gener-
ate the kth learning FM sketch, where 14k4z, we create an

FM sketch using only �k% of all flow IDs in the sampled set
S, where �k < �kþ1 and �z ¼ 100. To select �k% of flow IDs
from all flow IDs in the sampled set, for each flow ID, we
decide to use it to create the kth FM sketch with probability
of �k%. Recall from Section 3 that if n sampled packets have
a flow ID f , then that flow ID will have n entries in the sam-
pled set S.

Feature Extraction and Training Set: As aforementioned,
one learning FM sketch can act as only one training sample.
We generate multiple learning FM sketches. From each
learning FM sketch, we use the d locations, Li, of low-bits
and another d locations, Hi, of high-bits (a high-bit Hi repre-
sents the position of the leftmost 1 in the ith array) as fea-
tures, as a result of extensive experiments with different
features. The target is the actual exponent part of the query
formula of FM sketch. We have already seen in Section 2.3
that the location of low-bits is a function of the number of
flows, and can thus be used as features. The motivation
behind using the locations of high-bits as features is similar:
the position of the hight-bit is also a monotonically increas-
ing function of the number of flows.

Training: We minimize cross-entropy between predicted
values and real values with stochastic gradient descent [44]
on the training samples to obtain a model that can predict
the exponent part in query formula using the locations of
low-bits and high-bits in the regular FM sketch.

The hypothesis function is shown as following.

flowsize ¼ g2
1
d

�Pd�1

i¼0
aiLiþ

Pd�1

i¼0
biHi

�
;

(6)

flowsize represents the queried flowsize and the expo-
nent takes exactly the form of linear regression. as, bs, and g

are learning parameters. Li and Hi represent the low-bit
and high-bit of the ith FM sketch respectively.

Querying: To answer the query about the number of flows
at any point in time, we apply the linear regressive model
on the values of d locations, Li, of low-bits and another d
locations, Hi, of high-bits in the given regular FM sketch
and get the exponent part of query formula. Next, we use
the estimation formula of FM sketch to estimate of number
of flows.

5 IMPLEMENTATION

In this section, we describe the system that we developed
to evaluate the performance improvement of various
sketches due to our machine learning framework. The
codes are released at Github [2]. We also justify the sam-
pling ratio we used and the maximum rates at which our
implementation can record information from packets and
accurately respond to queries.

5.1 Overall System Design

As shown in Fig. 4, there are two parts in our architecture: a
switch and a server. The switch is responsible for generating
the regular sketches (that include CM, CU and FM sketches)
using packets arriving at the switch from all of its interfaces
and passes these sketches to the server every few seconds
over its direct Ethernet connection with the server. The
switch is also responsible for producing the sampled set S.
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The server has two network interface cards: one supports
DPDK [1] and is used to receive real or synthetic network
traffic, whereas the other is used to receive queries and
return results.

Computer Settings: We used two servers, each equipped
with 2 Intel CPUs (Xeon E5-2630, v2, 2.60 GHz, 12 physical
cores) and 80GB memory, two network interface cards (Intel
I340T2/82580, 1Gbps), running Ubuntu 14.04.3 LTS. The
first server used DPDK to send the captured traces from
switch-machine to the other server, which emulates the
packets being captured and processed at line-rate.

5.2 Implementation of Our ML Framework

The server implements and runs the machine learning
aspects and also receives, processes, and responds to the
queries. We use three threads to accomplish these tasks,
and each thread is bound with a CPU core. To receive pack-
ets from the switch, we use DPDK [1]. Memory pool, a data
structure defined and managed by DPDK, is used in the
server to store packets received from NIC (i.e., payload of
flow-IDs extracted from sampled packets as well as payload
of regular-sketch), which can accelerates packet processing
by eliminating packet copying between kernel space and
user space. Furthermore, there are three circular queues
(also called rings). One of these three rings is a hardware
(HW) ring dedicated for receiving packets from NIC, while
the other two are software (SW) rings acting as a pipe to
transfer data. These rings are also data structures defined
and managed by DPDK, and are used to store pointers to
the data in the memory pool.

As soon as the switch sends any packet (containing either
flow IDs of sampled packets or a regular sketch), the net-
work interface card (NIC) stores it in the memory pool and
inserts its address-pointer into the HW ring. We have imple-
mented a thread that is bound with a CPU core and polls the
HW ring for packets’ arrival. Let us call it thread 1. As soon
as it receives an address pointer from the HW ring, it
retrieves the corresponding packet from the memory pool
and analyses its contents. If the packet payload is composed
of flow IDs, then the thread 1 inserts its address pointer into
SW ring 1. If it contains a regular sketch, then the thread 1
inserts its address pointer into SW ring 2.

We have implemented a second thread that is bound
with a second CPU core polling the SW ring 1 for packets
coming from thread 1. Lets call it thread 2. As soon as it
receives an address pointer from the SW ring 1, it retrieves
the corresponding packet from the memory pool and based
on the sketching technique being tested, it uses flow IDs in
that packet payload to generate learning sketches, which is
then used to train machine learning models specific to that

sketching technique. Every time this thread creates a new
machine learning model, it passes that model to a third
thread, called thread 3, which is bound with a third CPU
core. In addition to receiving the trained model from thread
2, thread 3 also polls the SW ring 2 for packets coming from
thread 1. As soon as it receives an address pointer from the
SW ring 2, it retrieves the corresponding packet from the
memory pool and uses the regular sketch in that packet
along with the model it received from thread 2 to answer
any queries with higher accuracy.

5.3 Sampling Rate and Practicality

Next, through some basic calculations, we show that our
experimental setup can easily perform the three tasks of
estimating the flow-size, estimating the top-k flows, and
estimating the number of flows on traffic moving at
40Gbps*100 interfaces. The following discussion should
also alleviate concerns about the practical usability of
employing machine learning based techniques to improve
the accuracy of sketches.

From our very comprehensive set of experiments, we
observed that the accuracy of sketches decreases very slowly
when we decrease the sampling ratio from 1 in 5 packets to 1
in 1000 packets and we will discuss in more detail soon. Con-
sequently, a sampling ratio of 1 packet every 100 packets is a
reasonable choice and still enables us to improve the accu-
racy of existing sketches significantly. As our NIC and the
supporting architecture in the server can process data at the
full line rate, when sampling at a rate of 1 in 100 packets, the
hardware of our system can essentially process traffic seen
by all ports of a 100-port switch. Furthermore, the switch
only sends the flows ID of the sampled packets to the server
and not the entire packets. Suppose the size of the flow ID is
one-third of the size of the entire packet (usually the packets
are much larger than 3 � flow ID size), then the hardware of
our server can essentially process traffic seen by up to 3 �
100 ¼ 300 switch interfaces. Furthermore, as shown in Fig. 1
of [42], the links are often over-provisioned and the link uti-
lizations often lies below 20%. Consequently, hardware of
our server can essentially process traffic seen by up to
300=20% ¼ 1500 switch interfaces. This is a large enough
number for any commercial switch and router.

From our experiments, we also observed that the machine
learning model generated by thread 2 is valid for a reason-
ably long amount of time (see Fig. 8). Thus, thread 2 can gen-
erate machine learning models periodically and not
continuously. According to our experimental results (see
Fig. 7), when the sampling rate is 1/100, thread 2 takes about
0.165 seconds to process 10M packets, using a single CPU
core. This implies that our machine learning implementation

Fig. 4. Block diagram of the implementation of our machine learning framework.
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can easily keep up with a line rate of 10M � 84 � 8=0:165
� 40Gbps, assuming the minimum size of each Ethernet
packet is 84 bytes. When average link utilization is less than
10% [42], using a single CPU, the software of our system can
easily support a 40 Gbps switch with 10 interfaces. On a 16
core CPU, while utilizing only 10 cores for thread 2 and
remaining cores for threads 1 and 3, the software of our sys-
tem can easily support traffic seen by a 40 Gbps switch with
100 interfaces using the strategy of training always. Further-
more, according to Fig. 8, using training per hour instead of
training once, many more interfaces can be supported at the
cost of a little loss of accuracy.

6 EXPERIMENTAL RESULTS

In this section, we present the results from our experiments
for each of the three case studies that we presented in the
paper. Although we have improved version of algorithms
for flow sizes and top-k flows estimation tasks, they only
shows differences with the basic version in Average Abso-
lute Error and Average Relative Error. So for experiments
used to determine hyper parameters, we only use the basic
version. The codes of sketches are released on Github [2].

Traffic Traces: We collected real network traffic traces from a
tier-1 router. We captured 10 minutes of network traffic each
hour on two days. The number of packets in each 10 minute
traffic trace ranged from 876303 to 1124480, with 41.81% flows
having less than one packet, while some flows also had more
than 30000 packets. We identify flows using the standard 5-
tuple. We observed that the average flow size for different 10-
minute traces ranged from 8.67 to 10.04 packets per flow while
the standard deviation ranged from 102.7 to 146.9.

6.1 Evaluation for Flow Size Estimation

In this section, we use suffixe _ML to represent that a sketch
uses machine learning optimization and use suffixe
_EML1/_EML2 to represent the pointer-based versions and
enhanced version respectively.

Evaluation Metrics: We evaluate the accuracy of sketches
in terms of average absolute error (AAE), average relative
error (ARE), and AAE ratio. Let ri represent the true size of
the ith flow, r̂i represent the estimated size of that flow, and
n represent the total number of flows.

AAE is defined as:

AAE ¼ 1

n

Xn

i¼1

jr̂i � rij
ARE is defined as:

ARE ¼ 1

n

Xn

i¼1

jr̂i � rij
ri

;

AAE highlights the accuracy of sketches on large flows,
while ARE highlights the accuracy on small flows. AAE
ratio is defined as the ratio of the AAE achieved by the
sketch with machine learning to the AAE achieved by the
sketch without machine learning.

Parameters Selection: We have three parameters to select:
d, w, and sampling rate. In all our experiments, we allocate
a fixed amount of 1 Mbit memory to all sketches. Allocating
the fixed amount of memory allows us to do a fair compari-
son. We also observed from our experiments that using a
value of d ¼ 3 results in high accuracy. Therefore, we chose
to use d ¼ 3 in all our experiments. The size of each counter
for sketches is 32 bits.

Using these value of d and w, we measured the AAE
achieved by the three sketching techniques for flow size
estimation (i.e., CM, CU, and CSM) augmented with
machine learning with sampling rates varying from 1 in 5
packets to 1 in 1000 packets. Fig. 5 plots the AAE achieved
by each of these three techniques. It shows that the improve-
ment in AAE by increasing the sampling rate from 1 in 5
packets to 1 in 100 packets is very nominal. Therefore, in all
our subsequent experiments, we use a sampling rate of 1 in
100 packets for training machine learning models.

Learning Sketch Size: Now, we determine the appropriate
size of learning sketch. The scale rate is defined as the size
of original sketch devided by the size of learning sketch. In
this experiment, We use 1/1000 as our sample rate to
achieve a wide range of scale rate changes. We can vary our
scale rate from 1 to 1/1000 to better present the relation
between sample rate and corresponding scale rate. The intu-
ition is that scale rate should be inversely proportional to
sample rate. Experimental results further verify the hypoth-
esis. Fig. 6 illustrates that with a sample rate of 1/1000, a
learning sketch with scale rate of 1000 has the best perfor-
mance in terms of accuracy.

Training Frequency: Next, we determine the frequency at
which one should retrain the machine learning model for
optimum improvement in accuracy. For these experiments,
we use packets from our 10-minute traces that we collected
every hour on the first day. From each 10-minute trace, we
use the first 10M packets. To identify optimum training fre-
quency, we performed three sets of experiments. In the first
set of experiments, we calculated AAE for the regular CM
sketch. In the second set of experiments, we calculated AAE
using the first trace, and built a machine learning model for
each dataset (10M packets). Fig. 8 plots the AAE ratio of
these two sets of experiments, labeled “training always”. In
the third set of experiments, we calculated AAE using the
first dataset (10M packets) of the first trace with machine
learning, and use the trained model to predict the first 23

Fig. 5. Absolute error versus sampling rate. Fig. 6. Average absolute error versus scale rate.
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datasets of the second trace. Fig. 8 plots the AAE ratio calcu-
lated from the third and first set of experiments, labeled
“training once”. It shows that training on a decent amount
of data collected once an hour is enough to give good accu-
racy for the next hour. Consequently, in practice, the
machine learning based training will only be an infrequent
process and will not use a large amount of CPU, bandwidth,
and memory of a switch/router.

Next, we present the results from our experiments in
terms of the evaluation metrics defined earlier. The results
that we present for each sketch in Sections 6.1.1 and 6.1.2
next are generated by emulating the traversal of each of the
10-minute traffic traces from the switch machine and gener-
ating that sketch with or without machine learning.

6.1.1 Evaluation With CM Sketch

Our experimental results (Figs. 9 and 10) show that the AAE
of CM sketch with machine learning typically reduces to
about one third of the normal CM sketch’s AAE, from about
20 on average to about 6 on average. The ARE of regular
CM sketch is above 15 on average among different datasets.
That is because that most of the flows are mice flows, lead-
ing to high ARE. From our experimental results, shown in
Fig. 10, the ARE also decreased from 15 on average to about
4, with ARE ratio of about 0.25. We observe from this figure
that CM_ML, CM_EML1 and CM_EML2 achieved a smaller

error rate compared to the regular CM sketch. The perform-
ances of CM_ML and CM_EML1 do not show much differ-
ence due to the overhead of pointers. CM_EML2 showed
about 20% performance compared to CM_ML.

6.1.2 Evaluation With CU Sketch

Our experimental results (Figs. 11 and 12) show that the
AAE of CU sketch with machine learning typically reduces
to above one third of the normal CU sketch’s AAE, from
about 12 on average to about 5 on average. The ARE of regu-
lar CU sketch is above 15 on average among different data-
sets. From our experimental results, shown in Fig. 12, the
ARE also decrease from 10 onn average to about 3, with
ARE ratio of about 0.33.

We observe from this figure that CU_ML, CU_EML1 and
CU_EML2 achieved a smaller error rate compared to the
regular CU sketch. CU_EML2 also showed better perfor-
mance compared to CU_ML and CU_EML1. We may find
that the it has similar amount of improvement (about 20%)
compared to CM_ML and CM_EML even though for CU
sketches, counters share much less same noise.

6.1.3 Evaluation with CSM Sketch

Our experimental results (Figs. 13 and 14) show that the
AAE of CU sketch with machine learning typically reduces

Fig. 9. AAE of CM sketches for different datasets.

Fig. 8. Training once versus. training always.

Fig. 7. The time overhead of machine learning using different sampling
rate.

Fig. 10. ARE of CM sketches for different datasets.

Fig. 11. AAE of CU sketches for different datasets.

Fig. 12. ARE of CU sketches for different datasets.

WANG ET AL.: ENHANCED MACHINE LEARNING SKETCHES FOR NETWORK MEASUREMENTS 967

Authorized licensed use limited to: Tsinghua University. Downloaded on December 06,2024 at 11:36:03 UTC from IEEE Xplore.  Restrictions apply. 



to above one seventh of the normal CSM sketch’s AAE, from
about 45 on average to about 6.5 on average. The ARE of
regular CSM sketch is above 30 on average among different
datasets. From our experimental results, shown in Fig. 14,
the ARE also decreased from 30 on average to about 5, with
ARE ratio of about 0.16.

We observe from this figure that CSM_ML, CSM_EML1
and CSM_EML2 achieved a smaller error rate than regular
CSM sketch. CSM_EML2 showed better performance com-
pared to others.

6.1.4 Training Overhead Versus Sampling Rate

In our implementation, the time to generate learning sketch,
generate training samples, and train linear regression model
from 10M packets decreased from an average of 3.201s to
0.108s when decreasing the sampling rate from 1 in 5 to 1 in
1000 packets. Fig. 7 plots the total time for different sketch-
ing techniques to generate learning sketch, generate training
samples, and train linear regression model from 10M pack-
ets. For the sampling rate of 1 in 100 packets, this time is
just 0.165 sec. Even if we train a model once every hour,
0.165 seconds are negligible in one hour. Thus, machine
learning can be easily incorporated in real switches and
routers while keeping up with the line rate.

6.2 Evaluation for Top-K Flow Estimation

In this section, we use CM_Heap to represent a CM sketch
and a min-heap that are used to estimate sizes of top-k
flows, and CM_Heap_ML to represent that we are using
machine learning to improve the accuracy. We also use
CM_Heap_EML1 to represent the pointer-based version
and CM_Heap_EML2 to repersent the enhanced version.
We use the same two metrics, AAE and ARE, to quantify
the performance of flow size estimation accuracy of sketches
for top-k flow estimation. To evaluate these metrics, we cal-
culate the difference between the real size of a top-k flow

and its size recorded in the heap. For a top-k flow that hasn’t
been recalled, we treat its measured size as 0.

Our experimental results show that our classification
scheme correctly identifies over 80% of flows that are actu-
ally not among top-k flows but are incorrectly inserted into
the min-heap. We observed from our experiments that
when using different 10-minute network traces, the number
of such flows erroneously inserted into the min-heap lied in
the range of 9 to 29. Figs. 15 and 16 plot the AREs and
AAEs, respectively, of CM_Heap and CM_Heap_ML,
CM_Heap_EML1, as well as CM_Heap_EML2. We can find
that the CM_Heap with machine learning shows significant
improvement compare with a normal CM_Heap. Besides,
the pointer-based version and enhanced version performed
much better than CM_Heap_ML, for it uses linear regres-
sion to fix the value when a flow is inserted into the heap.
We find that in top-k task, our machine learning sketches
shows less improvement compared with flow size estima-
tion task. The main reason behind this is that top-k flows
are big in size and are difficult to be influenced by noise.
But our enhanced machine learning sketches still show 50%
improvement compared with normal sketches.

6.3 Evaluation for Flow Number Estimation

In this section, whenever we talk about FM sketch that uses
machine learning, we represent it with FM_ML sketch. The
evaluation metrics that we use in this section are relative
error (RE) and ARE. In our implementation, we used d ¼ 20
and w ¼ 32. For the set of experiments presented in this sec-
tion, the memory used by the sketch is, therefore, only 80
bytes, which is small enough to be stored even inside the
CPU registers.

Our experimental results show that in traces for which
REs of FM sketch are larger than 30%, the REs of the
FM_ML sketch are up to 1128.4 times smaller than the corre-
sponding REs of FM sketch with a mean of 117. Fig. 17 plots
the REs of FM and FM_ML sketch in 10 randomly chosen
such 10M packet traces for which RE of FM sketch is larger

Fig. 13. AAE of CSM sketches for different datasets.

Fig. 14. ARE of CSM sketches for different datasets.

Fig. 15. AAE for the top-k flows on different datasets.

Fig. 16. ARE for the top-k flows on different datasets.
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than 30%. We clearly observe from this figure that machine
learning significantly reduces the RE of the FM sketch.

Our experimental results also show that in traces for which
RE of the FM sketch is smaller than 30%, the AREs of the
FM_ML sketch are up to 49% smaller than the AREs of FM
sketch with a mean of 23%. Fig. 18 plots the AREs of FM and
FM_ML sketch in 10 groups of datasets, where each group
contains 10 randomly chosen 10M packets, for each of which,
the RE of FM sketch is smaller than 30%. We conclude from
Figs. 17 and 18 that when the the FM sketch already has rea-
sonably small error, then machine learning reduces the error
only nominally, but when FM sketch has large error, then
machine learning helps in reducing the error remarkably.

7 CONCLUSION

Due to the urgent requirement of accurate estimation of net-
work traffic, the sketching techniques have drawn significant
attention in recent years. In this paper, we have proposed a
generic machine learning framework to reduce the dependence
of sketches on network traffic characteristics, which in turn
improves their accuracy. We take several sketches that are
currently used to estimate three typical flow-level metrics
(flow sizes, top-k flows, and number of flows) and apply our
framework to them to demonstrate the effectiveness of our
framework.

Our machine learning framework can be applied to not
only most of the existing sketches but also to other probabi-
listic data structures. We hope that this work would spark
more research in the area of automating the sketching tech-
niques using machine learning.
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