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Approximation based on perturbation theory is the foundation for most of the quantitative predictions of
quantum mechanics, whether in quantum many-body physics, chemistry, quantum field theory, or other
domains. Quantum computing provides an alternative to the perturbation paradigm, yet state-of-the-art
quantum processors with tens of noisy qubits are of limited practical utility. Here, we introduce perturbative
quantum simulation, which combines the complementary strengths of the two approaches, enabling the
solution of large practical quantum problems using limited noisy intermediate-scale quantum hardware. The
use of a quantum processor eliminates the need to identify a solvable unperturbed Hamiltonian, while
the introduction of perturbative coupling permits the quantum processor to simulate systems larger than the
available number of physical qubits. We present an explicit perturbative expansion that mimics the Dyson
series expansion and involves only local unitary operations, and show its optimality over other expansions
under certain conditions. We numerically benchmark the method for interacting bosons, fermions, and
quantum spins in different topologies, and study different physical phenomena, such as information
propagation, charge-spin separation, and magnetism, on systems of up to 48 qubits only using an 8þ 1 qubit
quantum hardware. We demonstrate our scheme on the IBM quantum cloud, verifying its noise robustness
and illustrating its potential for benchmarking large quantum processors with smaller ones.
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A universal quantum computer can naturally simulate the
real-time dynamics of any closed finite dimensional quan-
tum system [1], a challenging task for classical computers.
While there has been tremendous progress in quantum
computing hardware development, including the landmark
quantum supremacy and advantage experiments with super-
conducting and optical systems [2–5], state-of-the-art quan-
tum hardware can still only control tens of noisy qubits
[2,5–7]. That is insufficient for the implementation of fault-
tolerant universal quantum computing, which requires 103

or more physical qubits per logical qubit to suppress the
physical error [8]. It is more pragmatic in the near term to
focus on the noisy intermediate-scale quantum (NISQ)
regime and utilize hybrid methods, which run a shallow
circuit without implementing full error correction [9].
Nevertheless, most quantum simulation algorithms, whether
targeting NISQ or universal quantum computers, generally
entail a number of physical or logical qubits no smaller than
the problem size [10–12]. Given that large-scale fault-
tolerant quantum computers do not yet exist and there will
be significant size constraints even on NISQ devices for the
foreseeable future, a pressing question is how to solve large
practical problems with limited quantum devices [13,14].

One possibility is to leverage the classical methods that
have been developed to solve quantum many-body prob-
lems, wherein the most successful one is perturbation
theory. This method divides the Hamiltonian into a major
but easily solved component and a weak but potentially
complicated counterpart, in which case the full dynamics
can be expressed as a series expansion [15–20]. However,
the ability to solve the major component and compute
the higher-order expansions limits the use of perturbation
theory in classical simulation of general many-body
problems.
Here, we propose perturbative quantum simulation

(PQS), which directly simulates the major component on
a quantum computer while perturbatively approximates the
weak interaction component. Since there is no assumption
on the size or interaction of the major component, PQS
potentially goes beyond the conventional perturbative
approach, and it could simulate classically challenging
systems, such as large systems with weak intersubsystem
interactions or intermediate systems with general inter-
actions. Compared to universal quantum computing, PQS
has limited power for arbitrary problems; yet, the perturba-
tive treatment of the weak component greatly reduces
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quantum resources compared with conventional quantum
simulation. Notably, PQS runs a shallower circuit with
fewer qubits, making it more noise robust and thus useful in
benchmarking large quantum devices with smaller ones.
Our simulations on the IBM quantum devices demonstrate
a significant improvement of the simulation accuracy over
direct simulation.
For eigenstate problems, there are considerable hybrid

schemes that combine different classical methods, such as
density matrix embedding theory [21–24], dynamical mean
field theory [25–27], density functional theory embedding
[28], quantum defect embedding theory [29,30], tensor
networks [31–33], entanglement forging [34,35], virtual
orbital approximation [36], quantum Monte Carlo [37–42],
etc. Our Letter instead focuses on the different but mean-
ingful dynamics problem, which is based on perturbation
theory and fundamentally from the existing ones with
different assumptions, limitations, or applications [43].
Background.—We consider to simulate the dynamics of

a quantum many-body system. Suppose the whole system
is divided into L subsystems according to topological
structures or degrees of freedom, like the clustered mol-
ecules [55], the Hamiltonian is H ¼ Hloc þ V int, where
Hloc ¼ P

l Hl is the local strong interaction with each Hl

acting on the lth subsystem, and V int ¼ P
j λjV

int
j is the

weak perturbative interaction between the subsystems.
Here V int

j are different types of interactions with real
amplitudes λj.
To simulate the dynamics of UðtÞ ¼ e−iHt, a representa-

tive perturbation treatment is via Dyson series expansion as

UðtÞ ¼ 1 − i
Z

t

t0

dt1eiH
locðt1−t0ÞV inte−iH

locðt1−t0Þ þ… ð1Þ

Then UðtÞ becomes a linear combination of trajectories
consisting of different sequential unitary operators. When
the local Hamiltonians fHlg are solvable, one can further
represent the expansion graphically, such as via Feynman
diagrams, and compute expectation values of the time
evolved state with different graphs corresponding to
different expansion terms. A limitation of perturbation
theory is the assumption of the simple hence solvable local
Hamiltonians, which fails when fHlg become strongly
correlated, as that happens in realistic systems. Indeed,
even if no interaction under certain partitioning strategy
with V int ¼ 0, no classical methods exist that can effi-
ciently simulate the dynamics of general Hamiltonian
Hloc ¼ P

l Hl; otherwise, the computational class of
bounded-error quantum polynomial time collapses. In
the following, we introduce the framework of PQS, based
on which we propose an explicit algorithm mimicking
Dyson series expansion and show its optimality over more
general theories.
Framework.—Here, we focus on general ways that realize

the joint time evolution channel Uðρ; TÞ ¼ UðTÞρU†ðTÞ by

applying only local operations on each subsystem separately.
To do so, we first introduce the concept of local generalized
quantum operations

ΦðρÞ ¼ TrE½Uðρ ⊗ j0ih0jEÞV†�: ð2Þ

Here we denote ancillary states j0ih0jE ¼ j0ih0jE1
⊗ � � � ⊗

j0ih0jEL
and unitary operatorsU ¼ U1E1

⊗ � � � ⊗ ULEL
and

V ¼ V1E1
⊗ � � � ⊗ VLEL

, where UjEj
and VjEj

represent
the operators acting only on the subsystem j and the jth
ancilla. While the operation ΦðρÞ is nonphysical in general,
it can be realized effectively using local operations and
postprocessing (see Ref. [44]). Note that ΦðρÞ reduces to
local quantum channels when U ¼ V. The key idea of PQS
theories is to decompose the joint evolution into a set of
generalized quantum operations, which separately act on
each subsystem. By choosing a spanning set of fΦkg
properly, an infinitesimal evolution governed by the inter-
action VðδtÞ½ρ� ¼ V intðδtÞρV intðδtÞ† can be decomposed as

VðδtÞ½ρ� ¼ IðρÞ þ δt
X

k

αkΦkðρÞ; ð3Þ

where V intðδtÞ ¼ e−iV
intδt represents the interacting unitary

operations within duration δt, and I is the identity operation.
Next, we consider a Trotterized joint evolution as

UðTÞ ¼ ½VðδtÞ∘⊗
l
U lðδtÞ�T=δt. Using the decomposition in

Eq. (3), we can then expand UðTÞ as a series of different
trajectories. Here, each trajectory is defined by which
operations act at each time, including the local time
evolution U lðδtÞ of each subsystem and one of the
generalized quantum operation ΦkðρÞ that on average
emulates the nonlocal effect of V int. The whole evolution
UðTÞ is now decomposed as a linear combination of local
operations that act separately on each subsystem, which can
be effectively realized in parallel. The expectation value of
an arbitrary state can be obtained from local measurement
results (see Sec. IB in the Supplemental Material [44] for
the derivation and implementation).
The above discretized scheme assumes a small discrete

timestep and requires us to apply the operations at each time
step δt, which is unnecessary since the effect of the weak
interacting operation VðδtÞ in a short time is close to the
identity. We address this problem by stochastically applying
the operation Φk depending on the amplitude of its
associated coefficient jαkj. Taking a short time limit
δt → 0, we generate each trajectory according to the
decomposition in Eq. (3) and stochastically realize the joint
time evolution with operations separately acting on each
subsystem. The average of different trajectories reproduces
the joint dynamics under UðTÞ. Note that the number of
generalized quantum operations required to realize the joint
evolution scales proportionally to the interaction strength as
OðPk jαkjTÞ, and on average the stochastic implementation
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scheme is proven to be equivalent to the discretized scheme
(See Sec. IC in [44]).
By applying our algorithm, the whole simulation process

is now decomposed into the average of different ones, each
of which only involves operations on the subsystems. Thus,
we can effectively simulate nL qubits with operations on
subsystems with only OðnÞ qubits, and this also offers
noise robustness of our method (see Sec. VII in [44]). Note
that local dynamics U lðtÞ could be implemented with any

Hamiltonian simulation methods, such as product formulae
[57,58] or quantum signal processing [59,60], and our
algorithm is compatible with both near-term and fault-
tolerant quantum computers.
Explicit protocol.—While the decomposition of Eq. (3)

holds in general for an (over)complete set of fΦkg, it
may involve difficult-to-implement operations in experi-
ments. Here, we address this problem by developing an
explicit decomposition with only local unitary operations.
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FIG. 1. Dynamics simulation of interacting (a) bosons, (b) fermions, and (c) quantum spin systems with different topologies. Gray
dashed lines in site-edge diagrams manifest subsystem partitioning for PQS. We group 8 qubits as a subsystem to simulate N ¼ 16-qubit
quantum systems using most 5 × 105 samples. Solid lines represent exact results from direct simulation. (a) Quantum walk (QW) of
spinless bosons on a 1D array in the large on site repulsion limit (see Sec. VI in [44] for the Hamiltonian [64]). Two identical bosons are
initially excited at the center. (a1) Density spreading hn̂ji ¼ hb̂†j b̂ji with bosonic operators b̂ under time evolution. (a2) The density
distribution at site 9—13 (labeling from left to right). The nearest-neighbor Lieb-Robinson bounds (dashed) capture the density
spreading [6,65,66]. The inset shows the errors for the average density and the average density-density correlator ρ̂ij ¼ hb̂†i b̂†j b̂ib̂ji with
respect to the exact results. (a3) Boson spatial antibunching in QW. The normalized correlator ρ̂ij=ρ̂max

ij at different t [67,68].

(b) Separation of charge and spin density (CSD) in a 1D Fermi-Hubbard model H ¼ −J
P

j;σ ðĉ†j;σ ĉjþ1;σ þ H:c:Þ þ U
P

j n̂j;↑n̂j;↓ þP
j;σ hj;σ n̂j;σ (ĉj;σ , ĉ

†
j;σ : fermionic operators with spin σ, U ¼ J ¼ 0.5) [68]. Left: two partitioning strategies for small and large on-site

potential U. The initial state is the ground state of a noninteracting Hamiltonian with quarter filling (N↑ ¼ N↓ ¼ 2), in which the CSD
are generated in the middle of the chain at t ¼ 0 [69–71]. (b1) The separation of charge (blue square) and spin (red diamond) densities.
We characterize the separation speed from the middle as κ� ¼ P

N
j¼1 jj − ðN þ 1Þ=2jðhn̂j;↑i � hn̂j;↓iÞ for charge (þ) and spin (−)

degrees of freedom with hn̂ji ¼ hĉ†j ĉji (N ¼ 8). The inset shows the errors under evolution. (b2) The difference of CSD under evolution.
The relative separation is initially set as 0. (c) Information propagation of correlated Ising spin clusters with power law decay
interactions Hloc

l ¼ P
ij Jijσ̂

x
l;iσ̂

x
l;j þ h

P
j σ̂

z
l;j (Jij ¼ ji − jj−1) in the subsystems and interaction V int ¼ σ̂x1;N σ̂

x
2;1 on the boundary. The

initial state is prepared as jψ0i ¼ σ̂x8j0i⊗N . (c1) The signal of quasiparticle excitations at different sites, where the propagation is faster
than the nearest-neighbor Lieb-Robinson velocity (dashed) [65,72,73]. (c2) The dynamics of the correlation function
Cd ¼ hσ̂z8σ̂z8þdi − hσ̂z8ihσ̂z8þdi. The inset shows the errors for the averaged quasiparticle excitations’ density and correlation functions.
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Specifically, we consider a natural expansion of
VðδtÞ as

VðδtÞ½ρ� ¼ IðρÞ − iδt
X

j

λjðV int
j ρ − ρV int

j Þ; ð4Þ

where all V int
j are tensor products of unitaries, and hence

each term IðρÞ, V int
j ρ, or ρV int

j corresponds to a specific
generalized quantum operation. We emphasize that the
expansion only involves unitary operations, and avoids the
computational cost in diagrammatic perturbation theory,
which greatly simplifies the implementation. We further
prove (in Theorem 3 in the Supplemental Material [44])
that the explicit decomposition corresponds to the infinite-
order Dyson series expansion [61].
Implementing the interaction V perturbatively using

generalized quantum operations introduces a sampling
overhead C. Specifically, when measuring the output state
of the perturbatively simulated state, the measurement
accuracy is ε ¼ OðCσ= ffiffiffiffiffiffi

Ns
p Þ, given Ns samples in contrast

to ε ¼ Oð1= ffiffiffiffiffiffi
Ns

p Þ in direct simulation. Here, σ is the
standard deviation introduced from the expansion, nor-
mally less than 1. Assuming the general decomposition of

Eq. (3), the overhead is C ¼ e
P

k
jαkjT . Different decom-

position of Eq. (3) would lead to different coefficients and
hence different overhead. We further prove that the explicit
decomposition in Eq. (4) has the minimal simulation cost,
provided that the Pauli operators of each Vi satisfy a certain
mild condition (see Theorem 2 in [44] for the proof of
optimality, and an illustrative example in [62]). Since the
overhead increases exponentially with λT ¼ P

i jλijT, PQS
cannot simulate arbitrary systems with strong V int or long
time T [63]. Yet, the overhead is independent of the initial
state, size, and interaction strengths of the subsystems.
With a constant λT , PQS could be applied to study intricate
quantum many-body systems with strong subsystem inter-
actions. As shown shortly, PQS can be used to probe
interesting physical phenomena directly, benchmark NISQ
processors, simulate large quantum circuits, etc.
Numerical and IBM Cloud results.—We apply PQS to

study many-body physical phenomena in different systems
with different topological structures. As shown in Fig. 1,
we investigate (a) the quantum walk of bosons on a one-
dimensional lattice, (b) the separation of charge and spin
excitations of fermions with two-dimensional topology, and
(c) the correlation propagation of quantum spin systems of
two clusters. We design appropriate partitioning strategies,
in which the whole system consists of two subsystems and
each subsystem consists of 8 qubits. In each example, we
present the corresponding task-specific partitioning strat-
egy of the quantum systems. Using the explicit decom-
position strategy, we exploit 8þ 1 qubits to simulate each
subsystem and classically emulate the quantum system
with numerical results shown in Fig. 1. All unique features

are detected just as we directly simulate the whole system.
Indeed, the numerical results align with those of the exact
simulation, thus verifying the reliability of the theory. We
refer to Sec. VI in [44] for other physical systems, including
the long-range spin chains, and simulation details.
These numerical tests are restricted to 16 qubits since the

exact simulation of larger quantum systems becomes
exponentially costly. To benchmark PQS for larger sys-
tems, we investigated a 1D 48-site spin chain with nearest-
neighbor correlations, using the time-evolving block deci-
mation (TEBD) method with matrix product states as the
reference. As shown in Fig. 2, our simulation results
coincide with those of TEBD, which again verifies the
reliability of PQS for simulating multiple subsystems.
Intriguingly, PQS only needs to manipulate 8þ 1 qubits
to recover the joint dynamics of the 48-qubit system.
We only consider the time evolution of small and

classically simulable quantum systems for benchmarking
our method. However, for all the examples considered here,
since the simulation cost is independent of the interaction
and initial states of the subsystems, PQS also works when
tackling a much larger subsystem with more complicated
subsystem interactions. In practice, when we increase the
subsystem size to around n ¼ 50 qubits and consider
general strong interactions, PQS could outstrip the capa-
bilities of classical simulation and reliably probe properties
of quantum systems with a small-size quantum processor.
In contrast to direct simulation, PQS could also be more

robust to noise attributed to the reduction of quantum
sources [74]. To verify such an advantage, we experimen-
tally study the dynamical phase transition of an 8-qubit
Ising model with nearest-neighbor correlations on IBMQ
hardware. By dividing the system into two subsystems, we
use a 4þ 1-qubit processor to implement our PQS algo-
rithm and compare the results with conventional direct
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FIG. 2. Dynamics simulation of 1D 48-site spin chains.
The subsystem and interaction Hamiltonians are Hloc

l ¼P
i σ̂

x
l;iσ̂

x
l;iþ1 þ

P
i σ̂

z
l;i and V int

l ¼ flσ̂xl;N σ̂
x
lþ1;1, respectively, and

the interactions on the boundary are randomly generated from
½0; J=2�. (a) The average magnetization (in blue) ð1=NÞPihσ̂zi i
and nearest-neighbor correlation function (in red)
½1=ðN − 1Þ�Pihσ̂zi σ̂ziþ1i, compared with the TEBD method as
a benchmark. The inset illustrates the geometry of the spin
systems and the partitioning strategy where we group 8 adjacent
qubits as subsystems. (b) The errors for the average magnetiza-
tion and correlation using 5 × 105 samples.
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simulation with 8 qubits, as shown in Fig. 3. For a total
evolution time T ¼ 1, a first-order Trotterization is used,
which has four steps and a negligible Trotter error.
Figures 3(d1) and 3(d2) show the magnetization and
Loschmidt amplitude in ferromagnetic phases. The results
clearly demonstrate that PQS achieves higher simulation
accuracy than direct simulation. It is also found that with
measurement error mitigation, PQS approaches the exact

result [75], and outperforms direct simulation consistently.
More results and detailed discussions on the implementa-
tion and noise robustness of PQS can be found in Sec. VII
in [44].
Conclusion and discussion.—Our theoretical, numerical,

and simulation results indicate that quantum simulation and
perturbation theory are not only compatible but comple-
mentary. The PQS algorithm leverages quantum computers
to simulate the major component of the Hamiltonian,
alleviating the constraint of a classical perturbation method,
and uses classical perturbation to approximate the inter-
action, circumventing limited quantum resources in near-
term or early-stage fault-tolerant quantum computers. Since
PQS is a hybrid method that combines quantum computing
and classical perturbation theory, it inherits their advantages
as well as their limitations, such as high-dimensional
systems with strong correlations V int and long time T.
Yet, PQS is applicable to intermediate-size systems, such as
a square lattice with tens to hundreds of qubits, and it is
particularly useful for large systems with weak intersubsys-
tem interactions, such as (quasi) one-dimensional systems
and clustered subsystems. Our results demonstrate wide
applicability of PQS methods for studying new physical
phenomena, and its potential application in benchmarking
large quantum processors with small ones, an emerging
demand in the NISQ era. Meanwhile, we could integrate
other classical perturbation treatments of the interaction
with quantum computing, such as the one that expands
according to the interaction strength. We might also con-
sider other hybrid approaches, such as tensor networks, to
effectively solve complex many-body systems while alle-
viating the simulation cost. One may also apply the idea of
PQS to more efficiently emulate large quantum circuits
using smaller ones [32,77–81].
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